leArning and robuSt deciSIon SupporT systems for agile mANufacTuring environment...
leArning and robuSt deciSIon SupporT systems for agile mANufacTuring environments
With a multidisciplinary consortium combining key skills in AI, manufacturing, edge computing and robotics, ASSISTANT aims to create intelligent digital twins through the joint use of machine learning (ML), optimization, simulatio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2021-123654OB-C31
OPTIMIZACION DISTRIBUIDA PARA ESTIMACION DE PARAMETROS, DE E...
195K€
Cerrado
Twin4Twin
Twinning to build an industrial ecosystem around the core pr...
1M€
Cerrado
FELICE
FlExible assembLy manufacturIng with human robot Collaborati...
6M€
Cerrado
CPP2021-008639
Gemelo digital industrial en línea con detección de anomalía...
292K€
Cerrado
Información proyecto ASSISTANT
Duración del proyecto: 39 meses
Fecha Inicio: 2020-07-22
Fecha Fin: 2023-10-31
Líder del proyecto
INSTITUT MINESTELECOM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
6M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
With a multidisciplinary consortium combining key skills in AI, manufacturing, edge computing and robotics, ASSISTANT aims to create intelligent digital twins through the joint use of machine learning (ML), optimization, simulation and domain models. The resulting tools permit to design and operate complex collaborative and reconfigurable production systems based on data collected from various sources such as IoT devices. ASSISTANT targets a significant increase in flexibility and reactivity, products/processes quality, and in robustness of manufacturing systems, by integrating human and machine intelligence in a sustainable learning relationship.
ASSISTANT provides decision makers with generative design based software for all manufacturing decisions. Rather than writing ad hoc code for each manufacturing sector, it provides a set of intelligent digital twins that self adapt to the manufacturing environment. It promote a methodology that enhances generative design with learning aspects of AI thanks to the data available in manufacturing. ASSISTANT aims to synthesize predictive/prescriptive models adjusted to the shop floor for each decision levels. Digital twins will be used as oracles by ML in order to converge towards models in phase with reality. This means that rather than writing specific code to cover a restricted set of goals/scenarios/hypotheses for a manufacturing system and a decision level, ASSISTANT will aim at learning models that can be used by standard optimization libraries. In this context, ML is used to predict parameter values, characterize parameters uncertainty, and acquire physical constraints. ASSISTANT will experiment this methodology on a significant panel of use cases selected for their relevance in the current context of the digital transformation of production in major manufacturing sectors undergoing rapid transformations like the energy, the industrial equipment, and automotive sectors which already make extensive use of digital twins.