Learning and modeling the molecular response of single cells to drug perturbatio...
Advances in single-cell genomics (SCG) allow us to read out a cell’s molecular state with unprecedented detail, increasingly so across perturbations. To fully understand a cellular system, one must be able to predict its internal...
Advances in single-cell genomics (SCG) allow us to read out a cell’s molecular state with unprecedented detail, increasingly so across perturbations. To fully understand a cellular system, one must be able to predict its internal state in response to all perturbations. Yet such modeling in SCG is currently limited to descriptive statistics. Building upon my expertise in machine learning, I propose to systematically model a cell’s behavior under perturbation, focusing on the largely untouched area of drug-induced perturbations with multiomics SCG readouts. A sufficiently generic model will predict perturbed cellular states, enabling the design of optimal treatments in new cell-types.
In a pilot study, we predicted gene expression changes of a cell ensemble in response to stimuli. DeepCell builds upon this approach: Based on a multi-condition, multi-modal deep-learning approach for both normal and spatially-resolved genomics, we will set up a constrained, interpretable model for the cellular expression response to diverse perturbations. The added flexibility of the DeepCell model versus classical small-scale systems biology models will allow us to interrogate the effects of combined drug stimuli and characterize the gene regulatory landscape by interpretation of the learned deep network.
DeepCell provides unique possibilities to capitalize on cell-based drug screens to address fundamental questions in gene regulation and predicting treatment outcomes. As a proof of concept, I will identify targets that regulate enteroendocrine lineage selection in the intestine. I will set up a 500-compound single-cell organoid RNA-seq screen based on compounds from a spatial imaging screen across 200,000 intestinal organoids, both of which we will model with DeepCell. We will leverage those models to predict optimal treatment for obese mice.
DeepCell opens up the possibility of in silico drug screens, with the potential to expedite drug discovery and impact clinical settings.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.