Layering, Understanding, Controlling and Integrating Ferroelectric Polar Textur...
Layering, Understanding, Controlling and Integrating Ferroelectric Polar Textures on Silicon
Ferroelectric materials have been known, and their fascinating properties exploited for more than 100 years. Still, in recent years, exotic polar textures resembling those found in magnetic materials have been unraveled in nanosca...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TED2021-130453B-C21
ESCRITURA OPTICA EN MATERIALES FERROELECTRICOS COMPATIBLES C...
196K€
Cerrado
PDC2023-145874-I00
Materiales con funcionalidad eléctrica, magnética, óptica o...
180K€
Cerrado
MODERN
Multiferroic Oxide 2DEgs for Reconfigurable nonvolatile memo...
173K€
Cerrado
POLARIS
Polarization tracking in situ
150K€
Cerrado
FIS2008-00715
FERROELECTRICOS RELAXORES EN LAMINA DELGADA: MEMORIAS NANOME...
48K€
Cerrado
MAT2010-15365
CAPAS Y MULTICAPAS DELGADAS FERROELECTRICAS PARA DISPOSITIVO...
230K€
Cerrado
Información proyecto LUCIOLE
Duración del proyecto: 62 meses
Fecha Inicio: 2023-06-08
Fecha Fin: 2028-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Ferroelectric materials have been known, and their fascinating properties exploited for more than 100 years. Still, in recent years, exotic polar textures resembling those found in magnetic materials have been unraveled in nanoscale ferroelectric perovskite oxides, such as flux closure domains, curling polarization, vortices, and the groundbreaking discoveries of polar skyrmions and merons in 2019/2020. Polar textures hold huge promise for novel robust topological electronic devices such as ultra-compact (> Tbit/in2) memories. However, so far, nanoscale polar domains have only been studied on special oxide substrates (e.g. SrTiO3), which precludes practical applications. I propose to take a revolutionary approach to the field of topological polar textures by bringing them to the realm of the Si platform. Not only is this necessary to implement energy-efficient nanodevices, but Si material and advanced CMOS semiconductor technologies offer multiple unexplored ways to engineer mechanical and electrical boundary conditions in ultrathin films and nanostructures of transition metal oxides.
With LUCIOLE, I will push the limits in the exploration and future harnessing of emergent states in ferroics with the following objectives:
- Create monolithically-integrated topological polar textures on silicon by molecular beam epitaxy and atomic layer deposition of epitaxial and glass-composite nanoscale ferroelectrics using strain, confinement and frustration engineering.
- Understand the polar textures created on silicon by combining advanced state-of-the-art correlative microscopies and spectroscopies at the nanoscale, including operando time-resolved methods.
- Integrate ferroelectrics at the nanoscale at the front-end- and back-end-of-line of Si chips in sub-500 nm two- and three-terminal devices with tunable stress and study their manipulation under electric field by statistically screening their properties at the wafer scale to unveil potentially rich behavioral patterns.