Laser-assisted sYnthesis of Magnetically mOtile plasmonic chiral Nanocatalysts
Catalysis holds immense significance in chemical manufacturing, being a key player in developing sustainable industrial processes with limited energy & resource consumption. In pharmaceutical industry, catalysis is crucial for ena...
Catalysis holds immense significance in chemical manufacturing, being a key player in developing sustainable industrial processes with limited energy & resource consumption. In pharmaceutical industry, catalysis is crucial for enabling mass production of affordable life-saving drugs. However, developing efficient catalysts for this sector poses a formidable challenge due to the inherent asymmetry of many biological processes. This is particularly critical in producing anticancer drugs because their synthesis relies on intermediates or reactions whose asymmetric nature, known as chirality, withholds their massive production, limiting equal global access to best health treatments.
An up-and-coming solution to address this dilemma is resorting to chiral plasmonic nanoparticles (NPs), as their outstanding optical rotation activity makes them well-suited for applications like polarization-sensitive photocatalysis, especially in the context of anticancer drug development. However, unleashing its full potential hinges on imbuing these chiral NPs with unusual properties like magnetism, allowing safe removal from products & recyclability without generating chemical waste. To date, creating a plasmonic structure that seamlessly integrates chirality with magnetic motility remains largely underexplored.
The LYMON project addresses this conundrum by expanding the repertoire of chiral nanocatalyst construction methods through a groundbreaking laser-based pathway. This innovative approach, supported both experimentally & theoretically, promises to bring a new generation of highly specific magnetic chiroplasmonic nanocatalysts characterized by their ability to be reused multiple times. All of this permiting reducing wasteful side reactions & improving control over pharmaceutical production, especially for anticancer drugs. Moreover, it promises to expand the horizons of synthetic chemistry, paving the way for cutting-edge routes to produce highly efficient & selective molecules.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.