Innovating Works

LUCA

Financiado
Laser and Ultrasound Co Analyzer for thyroid nodules
This is a trans-disciplinary project that joins endocrinologists (end-users), radiologists (end-users), physicists who are experts in medical photonics, engineers who are experts in photonics and ultrasonics and the industry to wo... This is a trans-disciplinary project that joins endocrinologists (end-users), radiologists (end-users), physicists who are experts in medical photonics, engineers who are experts in photonics and ultrasonics and the industry to work towards a concentrated goal - to produce a novel, point-of-care, low-cost, screening device that combines two photonics systems (near-infrared diffuse correlation spectroscopy (DCS) and time-resolved spectroscopy (TRS)) with a multi-modal ultrasound (US) system and a probe that enables multi-modal data acquisition for the screening of thyroid nodules (TN) for thyroid cancer (TC). TN are a common pathology having a prevalence of palpable nodules around 5% in women and 1% in men, that increases to 19-76% with the use of neck US. In screening thyroid nodules, to exclude thyroid cancer which occurs in 5-15% of TN, the first step is the US followed by fine needle aspiration biopsy (FNAB) of suspicious nodules. The sensitivity and specificity of this process in thyroid cancer are limited, with a large number of non-diagnostic and false positive results that lead to unnecessary surgeries. A reduction in the number of surgeries with a point-of-care diagnostic procedure would have an important socio-economic impact, diminishing the number of thyroidectomies and the associated comorbidities. This implies savings of millions of euros per year. Evidence shows that multi-modal approaches that include hemodynamic information leads to better specificity while each modality on its own fails. We hypothesize that a new optical-ultrasound probe and integrated system enabled by the development of novel, key enabling photonic components and sub-systems to provide synergetic information on tissue morphology, composition and function will have a large impact in this field. Our action is directed by end-users who participate in the proposal and will be exploited by the industrial partners who cover the whole value-chain. ver más
31/05/2021
4M€
Duración del proyecto: 66 meses Fecha Inicio: 2015-11-10
Fecha Fin: 2021-05-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2021-05-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ICT-28-2015: Cross-cutting ICT KETs
Cerrada hace 9 años
Presupuesto El presupuesto total del proyecto asciende a 4M€
Líder del proyecto
FUNDACIO INSTITUT DE CIENCIES FOTONIQUES Otra investigación y desarrollo experimental en ciencias naturales y técnicas asociacion
Perfil tecnológico TRL 4-5 50K