Innovating Works

SPECIPHIC

Financiado
Label free quantitative nanoscopy for molecular specific identification at depth...
Label free quantitative nanoscopy for molecular specific identification at depth in pristine living biological tissues Optical microscopy has undergone a revolution that now allows us to access molecular resolution (nanoscopy) with the identification of specific biomolecules within biological samples. Nanoscopy has become a key approach to deciphe... Optical microscopy has undergone a revolution that now allows us to access molecular resolution (nanoscopy) with the identification of specific biomolecules within biological samples. Nanoscopy has become a key approach to decipher the function of living matter since biomolecules are the elementary building blocks. While being a major tool, high-resolution and specificity can only be achieved by tagging the molecules of interest with fluorescent probes, which inevitably alters the samples, making them improper for medical applications including regenerative medicine. The leading dogmas being that (i) nanoscopy cannot be achieved without labelling and (ii) no specific signature from molecules can be retrieved without energy exchange with the sample (e.g. absorption by probes, molecular vibrational interaction). I propose a complete change of paradigm by introducing label-free nanoscopic imaging using the optical refractive index as a molecular sensor. My ground-breaking approach will be based on our pioneering work which demonstrates that phase, intensity and polarisation information can be quantitatively retrieved with unprecedented sensitivity and with an imaging resolution equivalent to regular imaging with fluorescent probes. I will re-forge this into a single-shot imaging technique capable of beating the optical resolution limit to access nanoscale resolutions, even deep inside living unmodified biological samples. Specific molecular information will be untangled through machine learning algorithms. SPECIPHIC will give birth to the first label-free molecular specific imaging with nanoscale resolution in pristine living biological tissues. The applicability of my concept will be demonstrated in this ERC starting project with applications in regenerative medicine and oncology, impacting thus directly important societal questions. My new approach will impact many other fields, in the biomedical world first but also in physics and for nanomaterial engineering. ver más
31/01/2025
1M€
Duración del proyecto: 63 meses Fecha Inicio: 2019-10-29
Fecha Fin: 2025-01-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-10-29
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2019-STG: ERC Starting Grant
Cerrada hace 6 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5