Four-dimensional smooth manifolds show very different behaviour than manifolds in any other dimension. In fact, in other dimensions we have a somewhat clear picture of the classification, while dimension four is still elusive. The...
Four-dimensional smooth manifolds show very different behaviour than manifolds in any other dimension. In fact, in other dimensions we have a somewhat clear picture of the classification, while dimension four is still elusive. The project aims to further our knowledge in this question in several ways. The genus function, and its enhanced version taking knots and their slice surfaces into account, plays a crucial role in understanding different smooth structures on four-manifolds. Techniques for studying these objects range from topological and symplectic/algebraic geometric (on the constructive side) to algebraic and analytic methods resting on specific PDE’s and on counting their solutions (on the obstructive side).The proposal aims to study several interrelated questions in this area. We plan to construct further exotic structures, detect and better understand their exoticness. In doing so, we put strong emphasis on knots and their slice properties in various four-manifolds. Ultimately we provide a candidate for an invariant, which is a smooth (and somewhat complicated) generalization of the intersection form, and we expect this generalization to characterize smooth four-manifolds. The novelty in this approach is the incorporation of knots and their slice surfaces in a significant and organized manner into the picture. While it provides a refined tool in general, this approach also touches classical aspects of four-manifold topology through the study of the concordance group. We plan to study divisibility and torsion questions in this group via knot Floer homology. Definition of the concordance group rests on the concept of slice knots, which is closely related to the ribbon construction. We plan to further study potential counterexamples for the famous Slice-Ribbon conjecture. The proposed problems can also provide explanations of the special behaviour of four-manifolds with definite intersection forms, like the four-sphere and the complex projective plane.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.