Significant efforts are underway in Europe to re-shore the synthesis of active chemical ingredients (API’s) to ensure the safety and availability of medicine for its citizens. This goes hand in hand with innovations and process in...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
IbD
Intensified by Design for the intensification of processes...
11M€
Cerrado
QFLUIDICS
The first non-clogging continuous flow reactor technology
4M€
Cerrado
DISCOVERER
A novel chemical discovery platform enabled by machine learn...
150K€
Cerrado
PID2021-128128NB-I00
EXPLORACION DE HERAMIENTAS DE APRENDIZAJE AUTOMATICO EN CATA...
103K€
Cerrado
CNS2023-144372
INTELIGENCIA ARTIFICIAL PARA EL ANALISIS CINETICO Y ESTUDIOS...
400K€
Cerrado
PTQ-10-03770
Implementación y Desarrollo de una metodología optimizada de...
50K€
Cerrado
Información proyecto KENA
Duración del proyecto: 25 meses
Fecha Inicio: 2024-03-22
Fecha Fin: 2026-04-30
Líder del proyecto
FUNDACION IMDEA NANOCIENCIA
Otra investigación y desarrollo experimental en ciencias naturales y técnicas asociacion
TRL
4-5
| 130K€
Presupuesto del proyecto
181K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Significant efforts are underway in Europe to re-shore the synthesis of active chemical ingredients (API’s) to ensure the safety and availability of medicine for its citizens. This goes hand in hand with innovations and process intensification. For example, doing multiple chemical reaction steps in one go, and/or by using continuous flow reactors that are more energy and solvent efficient, with a smaller footprint, scalable (by numbering-up), and cheaper to build and maintain. A key issue, however, of doing multiple reactions at once is that different reactants and products can react, thus forming a chemical reaction network (CRN). While CRN’s are ubiquitous in biological systems, they are mostly avoided in industry due to their complex behavior and effort needed to understand and quantify them. In this project, I propose a new method to analyse experimental kinetic data in order to directly determine the structure of the CRN. To this end, I will develop Kinetic Exponent Network Analysis (KENA) to study CRN’s that are of high interest for academia as well as industry. The change in concentration at early times can be described with power laws, from which the network connectivity of species population and thus the CRN structure can be deduced. KENA could then optimize the chemical conversion and selectivity of the desired products in CRN’s, contributing to efficient API re-implementation in Europe.