Joint Optimization of Data and Energy Networks for digitizing Sustainable Commun...
Joint Optimization of Data and Energy Networks for digitizing Sustainable Communities
COALESCE aims to develop a cross-optimization platform that enables integrated operation and interplay between the energy grids and the data and telecommunication networks. Telecommunication and data networks need energy, while en...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
INTEGRID
An INTEgral optimisation toolbox for smart GRID data communi...
71K€
Cerrado
TimeSmart
Timeliness of Information in Smart Grids Networks
Cerrado
TDX-ASSIST
Coordination of Transmission and Distribution data eXchanges...
4M€
Cerrado
TED2021-132700B-I00
RESPUESTA A LA DEMANDA A PRUEBA: DEMOSTRACION EN ENTORNO REA...
233K€
Cerrado
EPIC-HUB
Energy Positive Neighbourhoods Infrastructure Middleware bas...
7M€
Cerrado
NRG-5
Enabling Smart Energy as a Service via 5G Mobile Network adv...
7M€
Cerrado
Información proyecto COALESCE
Duración del proyecto: 50 meses
Fecha Inicio: 2023-09-26
Fecha Fin: 2027-11-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
COALESCE aims to develop a cross-optimization platform that enables integrated operation and interplay between the energy grids and the data and telecommunication networks. Telecommunication and data networks need energy, while energy grids need data to operate efficiently. This project will develop a framework that will optimize the interplay between energy grids and telecommunications and data networks in a way that both the infrastructure pillars (energy and telecommunications) are jointly sustainable and efficient. Through the Staff Exchange program, we will be able to exchange expertise and know-how between energy, data and telecommunications sectors across both academia and industry.
We will assess how the proposed architecture performs by validating the framework against 4 use case scenarios;
a) To investigate optimization algorithms for energy efficiency under simultaneous wireless information and power transfer (SWIPT) will be investigated in a local energy system context for a wireless sensor network.
b) To develop a novel framework for predicting and validating trading optimization strategies for in-house energy asset management, considering battery storage, flexible domestic demand, windfarm, solar cells etc,. using neural network and transfer learning-based models; while maintaining sustainable and secure exchange of data and user (or individual residence) portfolio.
c) To design novel set of measurement methodologies for the characterization of 5G/6G RAN's energy consumption and open data sets for analysis, parametric models of the energy consumption transfer function for the uplink and downlink and generative neural network models of the energy transfer function for the uplink and downlink.
d) To formulate joint data-energy-transportation robust/stochastic optimization algorithms considering computational load flexibility, intermittent energy generation and storage and multi-agent learning algorithms for collaborative e-transportation and SLES.