Jamming and Spoofing Resilient Deep Learning Based Software-Defined Multi-Antenn...
Jamming and Spoofing Resilient Deep Learning Based Software-Defined Multi-Antenna Multi-GNSS Receiver (JASMINE)
The Global Navigation Satellite Systems (GNSS) technology is known for precise positioning and timing capability that is of use in diverse fields of science and technology. The rapid development in this field by various nations in...
The Global Navigation Satellite Systems (GNSS) technology is known for precise positioning and timing capability that is of use in diverse fields of science and technology. The rapid development in this field by various nations in terms of deploying new satellite
systems (GPS, GLONASS, Galileo, COMPASS, IRNSS/NAVIC), new signals in different frequency bands (L1, L2, L5, G1, G2, E1, E5a, E5b, B1, B2, B3, etc.) is changing the trend of GNSS receiver design. Especially, the intrinsic flexibility of software-based receiver design approach is becoming a competitor to even highly developed ASICs. The goal of this project is to develop ‘Jamming and Spoofing Resilient Deep Learning based Software-Defined multi-antenna GNSS Receiver (JASMINE)’. JASMINE is a multi-antenna multi-system dual-band GNSS receiver with autonomous integrity ability. In this project we propose to build a novel design approach for software defined GNSS receiver, combining deep learning (DL) approach with the expert knowledge to replace existing GNSS receiver
algorithms. Novel techniques are proposed for multi-GNSS signal acquisition, denoising, orbit determination (Satellite position estimation), threat detection and mitigation (due to jamming, spoofing and ionosphere) by applying prominent deep neural networks (2D CNN, BiLSTM, RNN/LSTM, 1D CNN) and deep reinforcement learning (actor-critic (RNN/LSTM, 2D CNN), Sarsa, Q-learning, Policy Gradients) methods that add intelligence and give unseen capabilities to JASMINE in comprehending an increasingly complex
environment.
The proposed JASMINE supports all GNSS RF-frequencies (compatible with new signals), inherits the superiority of signal and navigation processing algorithms through Deep learning technology, and thus presents excellence performance. To achieve reconfigurability and optimized performance, Graphics processing unit (GPU) based Software Defined Radio (SDR) approach is preferred for JASMINE.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.