It's about time: Towards a dynamic account of natural vision.
The visual world around us is a source of rich semantic information that guides our higher-level cognitive processes and actions. To tap into this resource, the brain?s visual system engages in complex, intertwined computations to...
The visual world around us is a source of rich semantic information that guides our higher-level cognitive processes and actions. To tap into this resource, the brain?s visual system engages in complex, intertwined computations to actively sample, extract, and integrate information across space and time. Surprisingly however, the integrative nature of vision hardly plays a role in the way we approach it in experimentation and computational modelling. Instead, higher-level vision is commonly treated as a largely bottom-up categorization process.
TIME proposes a new approach. It will allow us to study vision in a more natural setting and as a process that is (a) geared towards semantic understanding instead of label-based categorisation, (b) naturally intertwined with active information sampling and (c) expanding across multiple timeframes, including network dynamics that unfold within and across eye fixations. This will be accomplished by an ambitious, three-step work program that combines cutting-edge non-invasive human brain imaging performed while participants visually explore tens of thousands of rich human-annotated natural scenes, the development of novel multivariate analysis techniques, and large-scale computational modelling using a new bio-inspired deep learning framework for active vision that closes the sensory-motor loop. Using this interdisciplinary approach, TIME will establish, for the first time, when, where, and how visual semantic understanding emerges in the brain as it actively samples and integrates information from the world in a continuously updating and dynamic decision process. These ground-breaking developments both in experimentation and deep neural network modelling build towards a fundamental paradigm shift in how we study, model, and understand vision, yielding new insights into its complex neural processes operating in more natural, ecologically valid conditions, as well as a closer alignment between biological and synthetic vision.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.