It takes two to TAngO2: unravelling the role of syntrophic interactions in the e...
It takes two to TAngO2: unravelling the role of syntrophic interactions in the evolution of anaerobic eukaryotes
Living without oxygen is challenging. To live in low-oxygen environments, some microbes exchange nutrients allowing for a division of labor among individuals in a process called ‘syntrophy’. Such interactions are often a pre-requi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2016-76273-P
INTERACTOMA VIRUS-HOSPEDADOR EN LA NATURALEZA: IMPLICACIONES...
303K€
Cerrado
SAF2015-72518-EXP
LAS TRNA SINTETASAS COMO REGULADORES MAESTROS DE LA INFECCIO...
54K€
Cerrado
BFU2009-12895-C02-01
BIOLOGIA DE SISTEMAS DE LAS INTERACCIONES BACTERIANAS EN INS...
369K€
Cerrado
BFU2009-12895-C02-02
BIOLOGIA DE SISTEMAS DE LAS INTERACCIONES BACTERIANAS EN INS...
91K€
Cerrado
CGL2010-19303
BIODIVERSIDAD MICROBIANA DE AMBIENTES HIPERSALINOS BASADA EN...
133K€
Cerrado
PID2021-126114NB-C43
CERRANDO EL CIRCULO: DE LOS CULTIVOS Y LA FUNCION A LOS GENO...
231K€
Cerrado
Información proyecto TANGO2
Duración del proyecto: 62 meses
Fecha Inicio: 2023-02-13
Fecha Fin: 2028-04-30
Líder del proyecto
LUNDS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
Living without oxygen is challenging. To live in low-oxygen environments, some microbes exchange nutrients allowing for a division of labor among individuals in a process called ‘syntrophy’. Such interactions are often a pre-requisite for prokaryotes living in these environments. Whether syntrophy is necessary for the survival of microbial eukaryotes (protists) is unexplored and yet, critically important to discerning the roles of eukaryotes in nature and how eukaryotic cells adapt to live without oxygen.
TAngO2 will test the hypothesis that syntrophic partnerships allow eukaryotes to thrive in anaerobic environments and underpin the evolution of key eukaryotic cell biological characteristics. This will be accomplished using state-of-the-art genomic, computational, and experimental approaches.
I will discover genes essential for interactions between a model protist and its ectosymbiont using massively-parallelized transposon mutagenesis. This will discern the molecular mechanisms, metabolic interplay, and selective forces dictating eukaryote:prokaryote interactions.
I will deliver metagenomes of cultured anaerobic eukaryote:prokaryote consortia predicted to be engaging in syntrophic interactions. This will drastically expand our knowledge of the biodiversity of eukaryotic genomes and microbial interactions from low-oxygen environments.
I will interrogate the frequency and diversity of syntrophy in eukaryotes by simultaneously sequencing the genomes and transcriptomes ofindividual protist cells and their microbiota sampled from nature. This will provide the first elucidation of what communities co-exist with natural anaerobic protists.
Understanding how syntrophic interactions have influenced eukaryotic cell biology will reveal hidden connections in the complicated functional networks of the eukaryotic cell. TAngO2 will open research avenues by bridging the fields of evolutionary cell biology and microbiology to understand ancient and recent symbiotic