Isotopic Signatures of Sulfur Cycling Organism Physiology and Ecology
Dissimilatory S metabolisms impart large S and O isotope fractionations, which are modulated by a suite of (bio)chemical reactions and physical processes (i.e., diagenesis) and ultimately preserved in the reduced and oxidized prod...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SULFUTOPES
Isotope Studies of the Sulfur Cycling using the Four Sulfur...
238K€
Cerrado
UNEARTH
Uranium isotope fractionation a novel biosignature to ident...
2M€
Cerrado
DatingSuCy
Timing the evolution of the dissimilatory sulfur cycle: a br...
Cerrado
MicroS
Micro scale 34S variation of sulfide species
254K€
Cerrado
TMUPIFE
Tracing Microbes using Phosphate in Fe oxide Environments
260K€
Cerrado
COULOMBUS
Electric Currents in Sediment and Soil
2M€
Cerrado
Información proyecto ISoSCOPE
Duración del proyecto: 59 meses
Fecha Inicio: 2024-10-01
Fecha Fin: 2029-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Dissimilatory S metabolisms impart large S and O isotope fractionations, which are modulated by a suite of (bio)chemical reactions and physical processes (i.e., diagenesis) and ultimately preserved in the reduced and oxidized products of sedimentary S cycling (e.g., pyrite, carbonate-associated sulfate). The multi-isotope composition of such compounds encodes valuable information about microbial activity, environmental conditions, and elemental cycles. Robust interpretation of these signals requires mechanistic understanding of both the metabolic isotope fractionation itself and the impacts of diagenesis on its ultimate preservation. Such understanding is currently limited by simplified models of isotopic fractionation in dissimilatory S metabolisms, and by difficulty in capturing spatio-temporally heterogeneous diagenesis in reaction-transport models. We pioneered metabolic-isotopic models (MIMs), which account for the thermodynamics and kinetics of enzymatic reactions and turn empirical multi-isotope correlations into causal relationships. Here, I propose to develop and apply novel, experimentally-validated MIMs of the three most ecologically important S metabolisms—sulfate reduction, reduced S oxidation, and S disproportionation. By embedding these MIMs in a hierarchy of ecosystem models of increasing dimensionality and sophistication, and comparing the results to microfluidic experiments and environmental data, we will gain quantitative, nuanced insight into: (i) the controls on multi-isotope fractionation in metabolic S cycling, (ii) its heterogeneous manifestation in aqueous and solid compounds, and (iii) the use of these compounds' isotopic compositions to robustly probe S cycling on microscopic to global scales, microenvironmental conditions, and depositional parameters, in both modern and ancient settings. With S as a test case, we blaze a path to similar treatment of the processes that govern the isotopic composition of many other natural materials.