The hydrological cycle, with its feedbacks related to water vapour and clouds, is the largest source of uncertainty in weather prediction and climate models. Particularly processes that occur on scales smaller than the model grid...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
COMBINISO
Quantitative picture of interactions between climate hydrol...
2M€
Cerrado
CGL2015-62968-CIN
DE LA EVAPORACION A LA PRECIPITACION: EL TRANSPORTE DE HUMED...
12K€
Cerrado
CGL2015-65141-R
EL TRANSPORTE DE HUMEDAD ATMOSFERICA, EL PUENTE ENTRE LA EVA...
146K€
Cerrado
CGL2010-16376
CAMBIOS HIDROLOGICOS ABRUPTOS EN LA PENINSULA IBERICA DURANT...
167K€
Cerrado
iSUBLIME
Isotopes in Sublimation by Laboratory and In-field Meteorolo...
216K€
Cerrado
STEEPclim
Spatiotemporal evolution of the hydrological cycle throughou...
2M€
Cerrado
Información proyecto ISLAS
Duración del proyecto: 83 meses
Fecha Inicio: 2018-02-22
Fecha Fin: 2025-01-31
Líder del proyecto
HOGSKULEN PA VESTLANDET
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The hydrological cycle, with its feedbacks related to water vapour and clouds, is the largest source of uncertainty in weather prediction and climate models. Particularly processes that occur on scales smaller than the model grid lead to errors, which can compensate one another, making them difficult to detect and correct for. Undetectable compensating errors critically limit the understanding of hydrological extremes, the response of the water cycle to a changing climate, and the interpretation of paleoclimate records. Stable water isotopes have a unique potential to serve as the needed constraints, as they provide measures of moisture origin and of the phase change history. We have recently spearheaded a revised view of the atmospheric water cycle, which highlights the importance of connections on a regional scale. This implies that in some areas, all relevant processes can be studied on a regional scale. The Nordic Seas are an ideal case of such a natural laboratory, with distinct evaporation events, shallow transport processes, and swift precipitation formation. Together with recent technological advances in isotope measurements and in-situ sample collection, this will allow us to acquire a new kind of observational data set that will follow the history of water vapour from source to sink. The high-resolution, high-precision isotope data will provide a combined view of established and novel natural isotopic source tracers and set new benchmarks for climate models. A unique palette of sophisticated model tools will allow us to decipher, synthesize and exploit these observations, and to identify compensating errors between water cycle processes in models. In ISLAS, my team and I will thus make unprecedented use of stable isotopes to provide the sought-after constraints for an improved understanding of the hydrological cycle in nature and in climate models, leading towards improved predictions of future climate.