Iron mineral dynamics in redox affected soils and sediments Pushing the frontie...
Iron mineral dynamics in redox affected soils and sediments Pushing the frontier toward in situ studies
IRMIDYN will study the dynamics of redox-driven iron mineral transformation processes in soils and sediments and impacts on nutrient and trace element behavior using a novel approach based on enriched stable isotopes (e.g., 57Fe,...
IRMIDYN will study the dynamics of redox-driven iron mineral transformation processes in soils and sediments and impacts on nutrient and trace element behavior using a novel approach based on enriched stable isotopes (e.g., 57Fe, 33S, 67Zn, 113Cd, 198Hg) in combination with innovative experiments and cutting-edge analytical techniques, most importantly 57Fe Mössbauer and Raman micro-spectroscopy and imaging. The thermodynamic stability and occurrence of iron minerals in sufficiently stable Earth surface environments is fairly well understood and supported by field observations. However, the kinetics of iron mineral recrystallization and transformation processes under rapidly changing redox conditions is far less understood, and has to date mostly been studied in in mixed reactors with pure minerals or sediment slurries, but rarely in-situ in complex soils and sediments. Thus, we do not know if and how fast certain iron mineral recrystallization and transformation processes observed in the laboratory actually occur in soils and sediments, and which environmental factors control the transformation rates and products. Redox-driven iron mineral recrystallization and transformation processes are key to understanding the biogeochemical cycles of C, N, P, S, and many trace elements (e.g., As, Zn, Cd, Hg, U). In face of current global challenges caused by massive anthropogenic changes in biogeochemical cycles of nutrients and toxic elements, it is paramount that we begin to understand and quantify the dynamics of these processes in-situ and learn how we can apply our mechanistic (but often reductionist) knowledge to the natural environment. This project will take a large step toward a better understanding of iron mineral dynamics in redox-affected Earth surface environments, with wide implications in biogeochemistry and other fields including environmental engineering, corrosion sciences, archaeology and cultural heritage sciences, and planetary sciences.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.