Investigation and Control of Hydrogen flames Across the Scales
ICHAruS is a Doctoral Network aimed to train early-stage researchers, able to face current and future challenges in the field of innovative, edge-cutting technologies based on electro-magnetic assist to achieve full control of the...
ICHAruS is a Doctoral Network aimed to train early-stage researchers, able to face current and future challenges in the field of innovative, edge-cutting technologies based on electro-magnetic assist to achieve full control of the hydrogen flames. ICHAruS has been built to provide doctoral training in a collaborative partnership between academic and industry partners who are major European gas turbine manufacturers. The aim of this partnership is thus to understand the physical processes that govern the interaction between hydrogen combustion and electro-magnetic fields at all flow scales to achieve such control and identify the key parameters that would allow for the design of an innovative, ultra-low NOx and flashback-proof combustion device. The behavior of hydrogen flames under plasma discharge and electromagnetic conditioning offer the opportunity to strongly accelerate the path towards zero-carbon energy and transport sectors. Three specific research objectives will be pursued: 1) Investigation and modelling of electromagnetic field effects on the species transport and chemical kinetics to unveil the effect of external electromagnetic fields on the reaction chemistry of hydrogen in both pure oxygen and air, and also determine any effects on the formation of pollutants. The effect of differential diffusion on the flame structure as opposed to electromagnetic drift will be also investigated. 2) Develop turbulence combustion models for low- and high-energy electromagnetic assisted combustion. The competing effects between electromagnetic drift and turbulence transport will be investigated and sub-grid scale closures for large-eddy simulations that consider the effect of electromagnetic fields and plasma will be developed. 3) Experimental and numerical investigation of innovative electromagnetic-assisted control technologies for the stabilisation of flames of practical interest. Both single swirl flames and annular configurations will be investigatedver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.