Innovating Works

Retina Rhythm

Financiado
Investigating the role of the inner retina in age related macular degeneration...
Age-related macular degeneration (AMD) is the leading cause of irreversible central blindness in the world. The number of people with AMD is predicted to be 196 million by 2020, with an estimated 1 in 10 people over the age of 55... Age-related macular degeneration (AMD) is the leading cause of irreversible central blindness in the world. The number of people with AMD is predicted to be 196 million by 2020, with an estimated 1 in 10 people over the age of 55 already showing early signs of the condition. Identifying those individuals at greater risk of disease progression is challenging and robust animal models of disease are delaying the development of therapeutics. We have recently discovered that the blood vessels of the inner retina are highly dynamic and our data suggest that they play a central role in AMD development. I hypothesize, in contrast to studies to date, that the inner retina may be critical to the early stages of AMD onset. We have discovered that circadian regulation of the inner blood-retina barrier (iBRB) allows for replenishment and renewal of components of photoreceptor outer segments on a daily basis by a process we have termed Retinal Interstitial Kinesis (RIK). Here, I propose that circadian mediated regulation of the inner retinal blood vessels is paramount in the early stages of AMD pathology. Our preliminary data suggests that circadian-mediated changes in the permeability of the iBRB can lead to an AMD-like phenotype in mice and non-human primates. I propose that re-establishing the dynamic cycling of the iBRB may represent a novel therapeutic strategy for the prevention and treatment of AMD. Over the next 5 years, the central aims of Retina-Rhythm are to: 1. Develop and characterize newly established mouse and non-human primate models of AMD by disrupting circadian cycling of the iBRB. 2. Develop a novel AAV based vector with the ability to re-establish dynamic circadian cycling of the iBRB and treat AMD. 3. Prove that dysregulated circadian-mediated iBRB cycling mediates AMD pathology in human subjects. Our goal: To determine the key early initiators of AMD and to develop the next generation of therapies for this devastating form of blindne ver más
30/06/2025
2M€
Duración del proyecto: 61 meses Fecha Inicio: 2020-05-04
Fecha Fin: 2025-06-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-05-04
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
THE PROVOST FELLOWS FOUNDATION SCHOLARS THE... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5