Investigating Quantum Phases at Extreme Charge Doping Limit by Scanning Tunnelin...
Investigating Quantum Phases at Extreme Charge Doping Limit by Scanning Tunneling Microscopy
Tailoring electronic properties of quantum matter is of immense current interest in the condensed matter physics community. The ability to control quantum states benefits both fundamental understanding of the underlying physics an...
ver más
Descripción del proyecto
Tailoring electronic properties of quantum matter is of immense current interest in the condensed matter physics community. The ability to control quantum states benefits both fundamental understanding of the underlying physics and the advancement of next-generation quantum techniques. Recently, ionic gating has emerged as a powerful tool in manipulating electronic states by achieving ultra-high doping levels. However, this technique has not been applied to scanning tunneling microscopy (STM) studies, which are crucial in accessing the local density of electronic states and exploring correlated phases.
I will establish a new STM technique that integrates ionic gating (SIG-STM) to manipulate quantum states through ultra-high carrier density doping. SIG-STM will open a completely new window to study highly doped correlated materials at the atomic level. 1. I will fabricate the nano-devices that can reach ultra-high doping levels through ionic gating and are compatible with low-temperature STM. 2. I will carry out STM studies on the devices to demonstrate the technique of SIG-STM. 3. I will combine SIG-STM and molecular beam epitaxy to study versatile and low-dimension materials.
This project combines the strengths of both the experienced researcher and the host group. Our new SIG-STM technique combines our expertise in the fabrication of high-quality devices (from myself) and STM measurements (from the host group). SIG-STM will be a breakthrough in condensed matter physics that can contribute to long-lasting problems such as the origin of high-temperature superconductivity. In addition, SIG-STM has great potential to expand understanding of new functional materials such as dissipationless materials and advanced electronics in quantum technologies with strong societal and potentially economic impact.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.