Inverse Modeling of PArameterized physics STochastic uncertainty using process l...
Inverse Modeling of PArameterized physics STochastic uncertainty using process level Observations
The emerging climate services in Europe and globally under the WMO GFCS critically depend on the science and application of Earth System (ES) modeling and prediction. An important aspect of the modelling and prediction challenge...
The emerging climate services in Europe and globally under the WMO GFCS critically depend on the science and application of Earth System (ES) modeling and prediction. An important aspect of the modelling and prediction challenge for the services is characterization of prediction uncertainty. Quantitative information about inherent uncertainty in the prediction is vital for risk assessments and decision support across public service and industry sectors. Over the past decades significant investments were made through the EC FPs into establishing the ES ensemble modeling and prediction capabilities that incorporate representation of sources of intrinsic uncertainty in the modeling systems and provide quantification of their impacts on seasonal to decadal climate prediction. The identified stakeholder priorities for the H2020 and beyond are in advancing of these prediction capabilities at regional level with high resolution models. This project is intended to contribute to the science of high resolution regional seasonal climate ensemble modeling, addressing the need for understanding and quantification of the prediction uncertainty at sub-regional and local scales. The research will focus on characterization of stochastic uncertainty associated with physical parameterizations in the regional ES models. The project will integrate the established ensemble modeling methodology from the foundational work with the global systems with a new approach to representing the stochastic uncertainty of physical parameterizations by means of inverse stochastic modeling using process-level observations. A long standing tradition in expert regional climate modeling at the hosting institution will be joined with the Researcher’s expertise and experience in geophysical modeling and cross-disciplinary methodology of data assimilation. The Researcher will be trained in the regional climate modeling and will apply the expertise to build a new research capacity at the hosting institution.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.