Interplay of structures in conformal and universal random geometry
My overall goal is to provide novel conceptual understanding of persistent challenges in mathematical physics, in light of recent discoveries of myself and others. The emphasis is especially in finding connections between differen...
My overall goal is to provide novel conceptual understanding of persistent challenges in mathematical physics, in light of recent discoveries of myself and others. The emphasis is especially in finding connections between different areas, making use of my expertise at their crossroads.
The first two aims concern statistical mechanics (SM) and mathematical formulations of (logarithmic) conformal field theory (CFT), on the one hand algebraically and on the other hand probabilistically. The last two aims focus on connections and interplay of structures arising in SM, such as Schramm-Loewner evolutions (SLE), with algebro-geometric formulations of CFT. Gaining conceptual understanding is fundamental for progress towards deep results.
Specifically, in Aim 1, I focus on CFT correlation functions and plan to reveal non-semisimple and logarithmic behavior, poorly understood even in the physics literature. For this, e.g. hidden symmetries from my earlier work will be exploited. Aim 2 combines this with probability theory: investigations of non-local quantities in critical SM models, relating to specific CFT correlation functions and to SLE. In Aim 3, I investigate the interplay of SLE, CFT, and Teichmueller theory in terms of generalizations of so-called Loewner energy of curves. The main objective is to shed light on the hidden geometric interpretation of Loewner energy from the point of view of formulations of CFT in terms of Riemann surfaces, and eventually also to find its role within geometric quantization. To elaborate the latter goal, Aim 4 combines these ideas with related structures in the theory of isomonodromic deformations. My starting point is the observation that Loewner energy minima and semiclassical limits of certain CFT correlations are both described by isomonodromic systems. I plan to make these connections explicit and implement them in order to discover intrinsic features of the interplay of the aforementioned structures.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.