Innovating Works

INFORM

Financiado
Interlaminar Fracture of Fiber-Hybrid Composite Laminates: A Multiscale Approach
Lightweight structures are becoming increasingly essential to meet global emission regulations. Fiber-reinforced composites (FRPs) constitute a highly profitable and fast-growing market for the EU. Their high stiffness and strengt... Lightweight structures are becoming increasingly essential to meet global emission regulations. Fiber-reinforced composites (FRPs) constitute a highly profitable and fast-growing market for the EU. Their high stiffness and strength and design flexibility enable designing lightweight structures with a low carbon footprint. In contrast, two main drawbacks hinder their industrial exploitation: poor delamination resistance and limited design space due to the lack of robust design tools and the limited capability of past production technologies. Fiber hybridization (i.e., combining two or more fiber types) increases their design space and can improve their toughness. Thus, fiber-hybrid FRPs are rapidly gaining market share in structural applications. Unfortunately, delamination modeling is challenging because several damage mechanisms occur simultaneously and interact at multiple physical length-scales. This fellowship will tackle these issues by developing novel fiber-hybrid (INFORM) FRPs by combining carbon and glass fibers to minimize delaminations, thus addressing current industrial needs for damage tolerance, weight savings, and sustainability. A multi-scale analytical and numerical approach will be developed to understand and analyze INFORM FRPs with unique performances. The optimal INFORM structures will be manufactured, tested, and analyzed through detailed damage analyses to build a fine-tuned design tool. This design tool will be translated into industry-friendly packages for direct exploitation. Automated manufacturing technologies (e.g., 3D printing) will also be used to tailor INFORM designs locally. Thus, macro-components will be created with locally improved delamination resistance without a weight increase. The fellowship will take place at KUL. The training plan, research work, and dissemination activities will serve as ideal preparation for the ER to lead a research group in or out of academia in the future. ver más
30/11/2025
176K€
Duración del proyecto: 25 meses Fecha Inicio: 2023-10-11
Fecha Fin: 2025-11-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-10-11
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 176K€
Líder del proyecto
KATHOLIEKE UNIVERSITEIT LEUVEN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5