Interface-sensitive Spectroscopy of Atomically-defined Solid/Liquid Interfaces U...
Interface-sensitive Spectroscopy of Atomically-defined Solid/Liquid Interfaces Under Operating Conditions
Charge-transfer reactions are key not only to the way that nature fuels life in photosynthesis but also in synthesizing sustainable fuels like hydrogen. Charge transfer occurs at interfaces with an applied potential, yet almost al...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto Interfaces at Work
Duración del proyecto: 63 meses
Fecha Inicio: 2022-01-27
Fecha Fin: 2027-04-30
Líder del proyecto
UNIVERSITEIT TWENTE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Charge-transfer reactions are key not only to the way that nature fuels life in photosynthesis but also in synthesizing sustainable fuels like hydrogen. Charge transfer occurs at interfaces with an applied potential, yet almost all our understanding of electrocatalytic activity trends comes from the bulk material properties in the as-prepared state. We still lack interface-sensitive spectroscopy tools that can probe the composition and electronic structure under reaction conditions. Only with such interface-sensitive operando information can we fully understand the underlying reaction mechanisms and devise strategies for efficient energy conversion and storage.
In Interfaces at Work, I will overcome these limitations by developing novel interface-sensitive operando X-ray spectroscopies combined with model electrochemical surfaces with atomic-layer compositional control, merging the fields of surface science and liquid electrochemistry. My aim is to fully visualize the physico-chemical properties of the solid/liquid interface under operating conditions. Specifically, I will develop a new laboratory-based, multicolour operando meniscus XPS (X-ray photoelectron spectroscopy) and transform the recently invented membrane XPS by making it accessible to the relevant electrochemical materials using these materials themselves as new membranes. I will apply these novel techniques to electrocatalyst and pseudocapacitor model systems based on epitaxial oxide thin films and 2D carbides.
Ultimately, the proposed approach will allow me to track the surface and subsurface properties under applied potential to shed light on the electrochemical mechanisms. The operando insights will result in design rules for efficient energy conversion and storage on the chemical and electronic properties of a true electrochemically active surface under operating conditions rather than the as-prepared bulk. This will help our transition towards sustainability.