Interactive Toolset for Understanding Trade offs in ATM Performance
ATM performance results from the complex interaction of interdependent policies and regulations, stakeholders, technologies and market conditions. Trade-offs arise not only between KPAs, but also between stakeholders, as well as b...
ver más
NOMMON SOLUTIONS AND TECHNOLOGIES
La investigacion de herramientas y soluciones de ayuda a la decision para el diseño, optimizacion y gestion de sistemas complejos. actividad...
TRL
4-5
| 260K€
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto INTUIT
Duración del proyecto: 26 meses
Fecha Inicio: 2016-02-17
Fecha Fin: 2018-04-30
Líder del proyecto
NOMMON SOLUTIONS AND TECHNOLOGIES
La investigacion de herramientas y soluciones de ayuda a la decision para el diseño, optimizacion y gestion de sistemas complejos. actividad...
TRL
4-5
| 260K€
Presupuesto del proyecto
998K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
ATM performance results from the complex interaction of interdependent policies and regulations, stakeholders, technologies and market conditions. Trade-offs arise not only between KPAs, but also between stakeholders, as well as between short-term and long-term objectives. While a lot of effort has traditionally been devoted to the development of microscopic performance models, there is a lack of useful macro approaches able to translate local improvements or specific regulations into their impact on high-level, system-wide KPIs.
The goal of INTUIT is to explore the potential of visual analytics, machine learning and systems modelling techniques to improve our understanding of the trade-offs between ATM KPAs, identify cause-effect relationships between KPIs at different scales, and develop new decision support tools for ATM performance monitoring and management. The specific objectives of the project are:
1. to conduct a systematic characterisation of the ATM performance datasets available at different spatial and temporal scales and evaluate their potential to inform the development of new indicators and modelling approaches;
2. to propose new metrics and indicators providing new angles of analysis of ATM performance;
3. to develop a set of visual analytics and machine learning algorithms for the extraction of relevant and understandable patterns from ATM performance data;
4. to investigate new data-driven modelling techniques and evaluate their potential to provide new insights about cause-effect relationships between performance drivers and performance indicators;
5. to integrate the newly developed analytical and visualisation functionalities into an interactive dashboard supporting multi-dimensional performance assessment and decision making for both monitoring and management purposes.