Intelligent Robotic Endoscopes for Improved Healthcare Services
In Intelligent Robotic Endoscopes (IRE) for Improved Healthcare Services we envision creating intelligent robotics solutions, extending current endoscope technology with robotics control that is based on learning from currently co...
In Intelligent Robotic Endoscopes (IRE) for Improved Healthcare Services we envision creating intelligent robotics solutions, extending current endoscope technology with robotics control that is based on learning from currently collected human operator data, coupled with novel bio-mechanical modeling techniques, and sensory feedback as well as soft robotics phantom for training.
The challenge with colonoscopy is that the success rate of detecting cancer depends on the skills of the clinician that operates the endoscope. From a health and societal perspective, the number of colonoscopies is bound to increase as they are the only way to screen patients for early cancer detection. Many European countries have national screening programs. This is a very big market in need of improved technology.
IRE enables a new generation of intelligent robots that through data, simulation and learning can interact with the interior of a living human while communicating with a human operator. The huge variation of human anatomy and the dynamic effect of human physiology make it a complicated navigational task to use endoscopes. Entanglement, haemorrhage, and perforation risks create a critical and difficult environment to navigate autonomously in where even trained human operators meet challenges. We exploit one of the largest datasets on real-life colonoscopies with more than 2,000 operations to learn safe navigation, combined with simulated training on a population of biomechanical models of the abdominal region.
IRE boosts the design and configuration of the robotic endoscope using digital twins and simulation, and careful inclusion of clinicians will speed up the process of integration. IRE will raise the level of autonomy by building upon simulation, imaging, and learning to yield an increased interpretation and understanding of the complex real- world environments, capable of anticipating the effect of human motions, adapting and replanning to avoid entanglement.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.