Intelligent Lung Support for Mechanically Ventilated Patients in the Intensive C...
Invasive mechanical ventilation (MV) is one of the most important and life-saving therapies in the intensive care unit (ICU). In most severe cases, when MV alone is insufficient, extracorporeal lung support (ELS) is initiated. How...
Invasive mechanical ventilation (MV) is one of the most important and life-saving therapies in the intensive care unit (ICU). In most severe cases, when MV alone is insufficient, extracorporeal lung support (ELS) is initiated. However, MV is recognised as potentially harmful, because inappropriate MV settings in ICU patients are associated with organ damage, contributing to disease burden. Studies revealed that MV is often not properly provided despite clear evidence and guidelines. Furthermore, treatment decisions by the healthcare providers, especially regarding MV and ELS, often remain incomprehensible to the patients and their relatives, since flow of information from caregivers to patients is challenged by a number of factors, including limited time and resources, communication problems as well as patients? capacity to comprehend and memorise information. The project proposed herein aims at clinically validating and extending our IntelliLung Artificial Intelligence Decision Support System (AI-DSS) designed to optimise MV and ELS settings to improve the care of ICU patients, alongside caregiver-patient communication. Thereby, best practice evidence-based MV and ELS within safer therapy corridors for longer periods, faster weaning from MV, and improved survival could be achieved - even in non-experienced hands. Additionally, this project will improve the information flow from caregivers to patients and relatives in the ICU setting. Therefore, we will develop a digital solution that allows automatic generation of an extensive plain-language information package for patients and their relatives, communicating highly individualised information on diseases and knowledge-based disease-management strategies, thus facilitating high-quality current and subsequent care through health literacy empowerment and patient-centredness. We will perform a retrospective and prospective multi-centre study to validate our IntelliLung AI-DSS and the patient information software.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.