Innovating Works

CoBRAIN

Financiado
Integrated Computational-Experimental material Engineering of Thermal Spray coat...
Wear and corrosion protection play a crucial role in the effort of European Manufacturing Industries to maximise both efficiency and productivity because they are inherently related to the lifetime of the components and their manu... Wear and corrosion protection play a crucial role in the effort of European Manufacturing Industries to maximise both efficiency and productivity because they are inherently related to the lifetime of the components and their manufacturing cost. Thermal Spray technologies for the deposition of Hardmetals were developed for this reason, i.e., specifically to provide higher resistance to sliding and abrasive wear, coupled with good corrosion resistance. In this field innovation is based on experimental trial-and-error and operational feedback, because the equations that can model the coating performance have to consider the mechanical properties of the hard phase and those of the metal binder, their microstructure and interaction, and their evolution during the non-equilibrium Thermal Spray process. The final coating properties depend on all these factors and more, and they are too many for a physical modelling workflow to provide reliable results on a time scale that is compliant with industrial responses to fluctuating markets, supply chains and regulations. On the other hand, tools based on experimental data that rely only on final coating macro properties require extensive datasets to be reliable. This again conflicts with the response time required by industrial innovation. Moreover, innovation in coating technology is not just a matter of performance and costs: industrial companies have to consider multiple other factors such as the impact on workers, hidden regulatory costs, environmental protection costs, and also general public opinion. CoBRAIN offers a solution to this need, exploiting the integration of computational and experimental data through semantic interoperability, and developing an intelligent tool that will be able to propose novel materials from the class of High Entropy Hardmetals for direct deposition by HVOF, HVAF and CGS Thermal Spray, and capable to estimate their impact on the economy and the environment. ver más
31/12/2026
5M€
Duración del proyecto: 47 meses Fecha Inicio: 2023-01-01
Fecha Fin: 2026-12-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-01-01
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 5M€
Líder del proyecto
UNIVERSITA DEGLI STUDI DI MODENA E REGGIO EMI... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5