The last few years have seen significant advances in the discovery and development of integrable models in probability, especially in the context of random polymers and the Kardar-Parisi-Zhang (KPZ) equation. Among these are the s...
The last few years have seen significant advances in the discovery and development of integrable models in probability, especially in the context of random polymers and the Kardar-Parisi-Zhang (KPZ) equation. Among these are the semi-discrete (O'Connell-Yor) and log-gamma (Seppalainen) random polymer models. Both of these models can be understood via a remarkable connection between the geometric RSK correspondence (a geometric lifting, or de-tropicalization, of the classical RSK correspondence) and the quantum Toda lattice, the eigenfunctions of which are known as Whittaker functions. This connection was discovered by the PI and further developed in collaboration with Corwin, Seppalainen and Zygouras. In particular, we have recently introduced a powerful combinatorial framework which underpins this connection. I have also explored this connection from an integrable systems point of view, revealing a very precise relation between classical, quantum and stochastic integrability in the context of the Toda lattice and some other integrable systems. The main objectives of this proposal are (1) to further develop the combinatorial framework in several directions which, in particular, will yield a wider family of integrable models, (2) to clarify and extend the relation between classical, quantum and stochastic integrability to a wider setting, and (3) to study thermodynamic and KPZ scaling limits of Whittaker functions (and associated measures) and their applications. The proposed research, which lies at the interface of probability, integrable systems, random matrices, statistical physics, automorphic forms, algebraic combinatorics and representation theory, will make novel contributions in all of these areas.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.