This project is devoted to integrable probability. The key feature of the field is the prominent role of methods and ideas from other parts of mathematics (such as representation theory, combinatorics, integrable systems, and othe...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
COMBINEPIC
Elliptic Combinatorics Solving famous models from combinato...
1M€
Cerrado
URSAT
Understanding Random Systems via Algebraic Topology
2M€
Cerrado
LIC
Loop models integrability and combinatorics
840K€
Cerrado
UniversalMap
Universality of random planar maps and trees
2M€
Cerrado
SCHREC
Stochastic recursions and limit theorems
84K€
Cerrado
MTM2011-23050
ARBOLES Y METODOS ALGEBRAS DE HOPF EN INTEGRATION NUMERICA Y...
11K€
Cerrado
Información proyecto IProbability
Duración del proyecto: 63 meses
Fecha Inicio: 2022-02-01
Fecha Fin: 2027-05-31
Líder del proyecto
UNIVERSITAET LEIPZIG
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project is devoted to integrable probability. The key feature of the field is the prominent role of methods and ideas from other parts of mathematics (such as representation theory, combinatorics, integrable systems, and others) which are applied to stochastic models. This philosophy often leads to very precise limit theorems which seem to be inaccessible by more standard probabilistic techniques.
The proposed research is a study of a variety of probabilistic models. Specific examples include the single- and multi-species asymmetric simple exclusion process, a six vertex model, random walks on Hecke, Temperley-Lieb, and Brauer algebras, random tilings models, and random representations. The suggested methodology consists of a range of probabilistic, algebraic, analytic, and combinatorial techniques.
The project involves two circles of questions. The first one focuses on random walks on algebras and their applications to interacting particle systems. The specific objectives include studying the Kardar-Parisi-Zhang type fluctuations for the multi-species asymmetric simple exclusion process, computing limit shapes and fluctuations around them for a general six vertex model, introducing and studying integrable three-dimensional analogues of a six vertex model, and developing a general theory of random walks on algebras.
The second one focuses on asymptotic representation theory. This area deals with the probabilistic description of representations of big groups. Such questions turn out to be related to a plethora of other probabilistic models, in particular, to models of statistical mechanics. The goals of this part include bringing this interplay to a new level, developing asymptotic representation theory of quantum groups, and studying random tilings in random environment.
The unifying idea behind these questions is a systematic use of precise relations for the study of asymptotic behavior of stochastic models which are out of reach of any other techniques.