Integrable Partial Differential Equations Geometry Asymptotics and Numerics.
Partial Differential Equations (PDE's) undoubtedly are among the main tools for an efficient modelling of physical phenomena. Infinite-dimensional analogues of regular (integrable) behaviour, previously confined to the theory of s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RIMMP
Random and Integrable Models in Mathematical Phyiscs
274K€
Cerrado
MTM2014-56350-P
ENCUENTROS ENTRE EL ANALISIS Y LA TEORIA DE LOS NUMEROS
37K€
Cerrado
MTM2013-46553-C3-1-P
RETOS EN INTEGRACION NUMERICA: DE LAS ESTRUCTURAS ALGEBRAICA...
41K€
Cerrado
MTM2016-77660-P
NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICO...
83K€
Cerrado
MTM2016-76072-P
ANALISIS GEOMETRICO Y NUMERICO DE SISTEMAS DINAMICOS Y APLIC...
65K€
Cerrado
MTM2011-24766
METODOS COMPUTACIONALES FIABLES PARA PROBLEMAS DE DIMENSIONE...
47K€
Cerrado
Información proyecto IPaDEGAN
Duración del proyecto: 73 meses
Fecha Inicio: 2017-11-21
Fecha Fin: 2023-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Partial Differential Equations (PDE's) undoubtedly are among the main tools for an efficient modelling of physical phenomena. Infinite-dimensional analogues of regular (integrable) behaviour, previously confined to the theory of systems with a finite number of degrees of freedom began to be considered in the middle of the XX century in fluid dynamics, field theory and plasma physics.
The idea that an integrable behaviour persists in non-integrable systems, together with the combination of the state-of-the-art numerical methods with front-line geometrical and analytical techniques in the theory of Hamiltonian PDE's is the leitmotiv of this research project.
Asymptotic regimes leading to phase transitions both in the theory of dispersive PDEs and the theory of Random Matrices display universality properties which can be analysed both numerically and analytically. The predictive power of numerics and scientific computing can be used both as a testing tool for theoretical models and as a generator of new conjectures.
By focussing the expertise of front line researchers in different areas of Mathematics towards the study of critical phenomena in dispersive PDE's, we expect results in realms including differential and algebraic geometry, the theory of random matrices, multiscale analysis of PDE's as well as non-linear models of stratified fluid flows.
The broad interdisciplinary basis and intertwining of methods of Geometry and Mathematical Physics will be instrumental in making the results accessible for the wider community. Younger (Ph.D. and/or Post-Docs) Researchers to be included in such an active and fertile research and training ground, will certainly seize their chance to enhance and broaden their skills.