In-situ Mechano-catalysis for Polymer Activation and ConTrolled Conversion
Less than 9% of plastic is recycled. Currently applied recycling technology yields degraded materials because undesired mechano-chemical bond cleavage shortens the polymer upon repeated processing. Here, I introduce a new type of...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PRIME
A Process to Engineer and Manufacture Medium to High Value 3...
2M€
Cerrado
EUR2020-112080
IMPLEMENTACION DE ORGANOCATALIZADORES PARA LA ECONOMIA CIRCU...
60K€
Cerrado
COOLEFIN
Novel Dinuclear Late Transition Metal Catalysts for CO2 Olef...
220K€
Cerrado
TED2021-131460A-I00
DEPOLIMERIZACION ASISTIDA POR DOMINIOS EN LIQUIDOS IONICOS U...
117K€
Cerrado
PID2021-126165OB-I00
RECICLADO DE ELASTOMEROS DESVULCANIZADOS, PARA LA OBTENCION...
97K€
Cerrado
TED2021-132648B-I00
POLIMEROS RECICLABLES BASADOS EN LACTONAS BICICLICAS HIBRIDA...
288K€
Cerrado
Información proyecto IMPACT
Duración del proyecto: 59 meses
Fecha Inicio: 2025-01-01
Fecha Fin: 2029-12-31
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Less than 9% of plastic is recycled. Currently applied recycling technology yields degraded materials because undesired mechano-chemical bond cleavage shortens the polymer upon repeated processing. Here, I introduce a new type of catalyst to exploit this undesired effect to recover the polymer building blocks, the monomers, which enables the production of new high-quality polymer. I will focus on polyolefins (PP, PE) that make up 50% of polymer production and for which the state-of-the-art pyrolysis process has high energy costs and does not yield pure monomer. That is because at the 600 °C needed to break the strong carbon-carbon (C-C) bonds of PP and PE unwanted reactions occur. Adding a catalyst powder, a known strategy to exert reaction control, is inefficient for polymers because they cannot reach the active sites in the catalyst pores.I will break the C-C bonds with force instead of heat. The force is provided by collision of balls in a ball mill, a mature grinding technology that I repurpose as reactor to introduce my tunable direct mechano-catalyst: I will chemically treat the surface of the balls to create catalytic, e.g., acid, sites that are in efficient contact with polymer through vigorous ball movement. In our ground-breaking proof-of-concept experiment, we were surprised to see monomer form below 60 °C from PP, and a remarkable 4x increased activity over a traditional catalyst.To realize the full potential of this new catalytic concept, I will establish the underlying fundamental framework by A) understanding the mechanism of reactions following C-C cleavage, B) developing a predictive model of cleavage rate as a function of temperature and force and C) understanding the synergistic interplay of catalytic spheres and mechano-chemical activation. To achieve this, I will develop a new methodology for in-situ spectroscopy during ball milling in combination with radical trapping and apply the tunable direct mechano-catalysts to a variety of polymers.