Daylength measuring devices such as the photoperiodic timer enable animals to anticipate and thus survive adverse seasons. This ability has contributed to the great success of insects living in temperate regions. Yet the basis of...
Daylength measuring devices such as the photoperiodic timer enable animals to anticipate and thus survive adverse seasons. This ability has contributed to the great success of insects living in temperate regions. Yet the basis of photoperiodic sensing remains elusive, because of the lack of suitable genetic models expressing photoperiod-dependent seasonal phenotypes. We have developed the linden bug, Pyrrhocoris apterus, into a genetically tractable model with a robust, photoperiod-dependent reproductive arrest (diapause). With the available tools, this insect has become ideal for deciphering the regulation of seasonality. The project has 3 clear and ambitious objectives: 1). Our goal is to define the molecular and anatomical bases of the photoperiodic timer. To achieve this, we propose to identify photoperiodic timer genes, genes regulating input to the timer, and early output markers, through an RNA interference screen(s). To define the molecular mechanism of the timer, we will employ genome editing to precisely alter properties of the key players. 2). Next, we will combine techniques of neuronal backfilling, in-vivo fluorescent reporters, and microsurgery to define the photoperiodic timer anatomically and to examine its spatial relationship to the circadian clock in the insect brain. 3). We will exploit the great natural geographic variability of photoperiodic timing in P. apterus to explore its genetic basis. Genetic variants correlating with phenotypic differences will be causally tested by genome editing within the original genetic backgrounds. Both the established and the innovative strategies provide a complementary approach to the first molecular characterization of the seasonal photoperiodic timer in insects. The proposed research aspires to explain mechanisms underlying the critical physiological adaptation to changing seasons. Deciphering mechanisms underpinning widespread adaptation might bring general implications for environment-friendly pest control.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.