In-Operando characterizatioN of anti-ambipolar mIxed Conductors
This proposal concerns the fundamental properties of mixed ion-electron conducting polymers. These materials are biocompatible and conduct both ions and electrons, making them excellent candidates for bioelectronic applications in...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2009-09138
APLICACIONES DE LOS POLIMEROS CONDUCTORES EN INGENIERIA Y BI...
169K€
Cerrado
MAT2016-76039-C4-1-R
BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR...
242K€
Cerrado
MAT2016-76039-C4-4-R
MODELADO COMPUTACIONAL AVANZADO Y OPTIMIZADO DEL COMPORTAMIE...
85K€
Cerrado
RTI2018-098951-B-I00
DISPOSITIVOS AUTONOMOS PARA LA DETECCION Y LA LIBERACION: EN...
303K€
Cerrado
MAT2016-76039-C4-3-R
UNA NUEVA GENERACION DE MATERIALES ELECTROACTIVOS Y BIOREACT...
182K€
Cerrado
Información proyecto IONIC
Duración del proyecto: 24 meses
Fecha Inicio: 2024-03-12
Fecha Fin: 2026-03-31
Líder del proyecto
LINKOPINGS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Descripción del proyecto
This proposal concerns the fundamental properties of mixed ion-electron conducting polymers. These materials are biocompatible and conduct both ions and electrons, making them excellent candidates for bioelectronic applications interfacing with living tissue. The conductivity of these materials increases under bias by injecting ions and concerted doping of the semiconducting polymer. However, upon high doping the conductivity can no longer increase but rather decrease. The exhibited maximum, where any voltage change lowers the conductivity, amounts to an anti-ambipolar response which finds applications in biorealistic artificial neurons. The underlying mechanisms, however, remain unknown in part because of the inherent instability of highly doped polymer semiconductors. Without understanding the fundamentals of these materials, targeted optimization and development are inhibited.
Additional complications arise from the complex environment in which they operate, consisting of ions and water. Their characteristics and response to doping are highly different in these conditions compared to ex-situ measurements, making in-operando characterization absolutely crucial. In-operando characterization is however not straightforward and requires specialized equipment.
In this IONIC proposal, a research plan is described to investigate the fundamentals underlying anti-ambipolarity by designing and building novel in-operando measurement tools, and applying them to a uniquely stable ladder-type polymer. This unprecedented approach allows for characterizing, for the first time, the doping interactions throughout the anti-ambipolar regime.
Project IONIC marks a major breakthrough in understanding organic semiconductor doping in electrolytes. The resulting general structure-property relations uncovered by the research described in this proposal will enable an intelligent design of material systems for exciting applications in bioelectronic interfacing and biomimicking circuitry.