In-Operando characterizatioN of anti-ambipolar mIxed Conductors
This proposal concerns the fundamental properties of mixed ion-electron conducting polymers. These materials are biocompatible and conduct both ions and electrons, making them excellent candidates for bioelectronic applications in...
ver más
Descripción del proyecto
This proposal concerns the fundamental properties of mixed ion-electron conducting polymers. These materials are biocompatible and conduct both ions and electrons, making them excellent candidates for bioelectronic applications interfacing with living tissue. The conductivity of these materials increases under bias by injecting ions and concerted doping of the semiconducting polymer. However, upon high doping the conductivity can no longer increase but rather decrease. The exhibited maximum, where any voltage change lowers the conductivity, amounts to an anti-ambipolar response which finds applications in biorealistic artificial neurons. The underlying mechanisms, however, remain unknown in part because of the inherent instability of highly doped polymer semiconductors. Without understanding the fundamentals of these materials, targeted optimization and development are inhibited.
Additional complications arise from the complex environment in which they operate, consisting of ions and water. Their characteristics and response to doping are highly different in these conditions compared to ex-situ measurements, making in-operando characterization absolutely crucial. In-operando characterization is however not straightforward and requires specialized equipment.
In this IONIC proposal, a research plan is described to investigate the fundamentals underlying anti-ambipolarity by designing and building novel in-operando measurement tools, and applying them to a uniquely stable ladder-type polymer. This unprecedented approach allows for characterizing, for the first time, the doping interactions throughout the anti-ambipolar regime.
Project IONIC marks a major breakthrough in understanding organic semiconductor doping in electrolytes. The resulting general structure-property relations uncovered by the research described in this proposal will enable an intelligent design of material systems for exciting applications in bioelectronic interfacing and biomimicking circuitry.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.