Innovative high temperature thermal energy storage concept for CSP plants exceed...
Innovative high temperature thermal energy storage concept for CSP plants exceeding 50 efficiency
Energy provision is a big challenge for our Society, being the present production/consumption paradigm not sustainable. To change current trends, a large increase in the share of Renewable Energy Sources (RESs) is crucial. The eff...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
ABraytCSPfuture
Air-Brayton cycle concentrated solar power future plants via...
3M€
Cerrado
PID2020-115866RB-C22
DISEÑO Y CARACTERIZACION DE NUEVOS FLUIDOS Y SU COMPATIBILID...
230K€
Cerrado
ASTERIx-CAESar
AIR-BASED SOLAR THERMAL ELECTRICITY FOR EFFICIENT RENEWABLE...
6M€
Cerrado
ABraytCSPfuture
Air-Brayton cycle concentrated solar power future plants via...
3M€
Cerrado
ENE2014-56079-R
NUEVOS DESARROLLOS PARA UNA TECNOLOGIA TERMOSOLAR MAS EFICIE...
363K€
Cerrado
Información proyecto GLASUNTES
Duración del proyecto: 47 meses
Fecha Inicio: 2015-05-06
Fecha Fin: 2019-04-30
Líder del proyecto
UNIVERSITA DI PISA
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
260K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Energy provision is a big challenge for our Society, being the present production/consumption paradigm not sustainable. To change current trends, a large increase in the share of Renewable Energy Sources (RESs) is crucial. The effectiveness of Thermal Energy Storage (TES) poses Concentrated Solar Power (CSP) systems at the forefront, as the first dispatchable option among all intermittent RESs. In order to realize the CSP potential, the efficiency of the adopted Power Conversion Units (PCUs) must grow over 50%, entailing temperature levels of the order of 1000 °C: promising solutions are based on Brayton thermodynamic cycles. This project stems from the observation that no existing TES option can be coupled to such PCUs and/or work at these temperatures, and aims at filling this gap. Three interrelated research objectives are proposed, to prove the feasibility and assess the potential of
1. an innovative CSP concept whereby (i) the receiver is co-located with the TES vessel, (ii)
the solar radiation is directly absorbed by the liquid storage medium, and (iii) the thermal
power is withdrawn from the TES by bubbling a gas through it, which can thus be used as
working fluid in a Brayton cycle. An efficient and simple system results, without irradiated
metal tubes, secondary fluid loops, heat exchangers, valves, nor pumps;
2. the adoption of common glass-forming compounds as novel TES materials. These are nontoxic
and inexpensive (mainly sand), and the related know-how is already available from
the glass manufacturing field, whose deep synergies with the CSP sector will be explored
in a multi-disciplinary perspective;
3. the CSP systems resulting from the integration between receiver–TES and PCUs.
The envisaged approach combines advanced theoretical and experimental research activities to achieve these goals. The final scope is to inaugurate a new branch in the field of solar systems, with the potential of enabling the CSP plants we need to ensure a bright Future.