Initial Conditions for Quark and Gluon Matter Formation at the LHC
The central goal of heavy-ion physics at the energy frontier is to create, and study in the laboratory, Quark-Gluon Plasma (QGP), a state of matter predicted by the fundamental theory of strong interactions. Current state-of-the-a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QCDENSE
Precision tools for high energy QCD scattering at the LHC an...
100K€
Cerrado
3DSPIN
3 Dimensional Maps of the Spinning Nucleon
2M€
Cerrado
JQ4LHC
Jet quenching for heavy ion collisions at the LHC
197K€
Cerrado
LoopAnsatz
Analytic Loop Amplitudes from Numerics and Ansatz
191K€
Cerrado
HIC-LHC-2008
Theory and phenomenology of the heavy ion collision program...
45K€
Cerrado
HiPPiE_at_LHC
High Precision PDFs for the precision Era at the Large Hadro...
180K€
Cerrado
Información proyecto InitialConditions
Duración del proyecto: 65 meses
Fecha Inicio: 2023-03-31
Fecha Fin: 2028-08-31
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The central goal of heavy-ion physics at the energy frontier is to create, and study in the laboratory, Quark-Gluon Plasma (QGP), a state of matter predicted by the fundamental theory of strong interactions. Current state-of-the-art interpretation of experimental data from the LHC experiments relies on Bayesian global fits of anisotropic flow vn and mean transverse momentum [pT], and provided the first quantitative measures of the fundamental transport parameters (shear and bulk viscosity) of the QGP. This represents the best understanding of the QGP so far. However, recent studies of the correlations between anisotropic flow and mean transverse momentum reveal that no existing Bayesian analysis can describe the new data in a consistent way because of the lack of constraints on the initial conditions, which set the stage for the subsequent dynamic evolution. Hence, it is scientifically urgent to significantly improve understanding about the initial conditions in the various collision types that can be probed at the world’s leading facility, the Large Hadron Collider, to be able to extract precise properties of the QGP and its dynamic evolution as a function of temperature (time). In this ERC project, I will develop methodology for studying genuine correlations between vn and [pT], using a new approach, a multi-particle cumulants technique. This will give unique insights into the initial geometric conditions, shape, size and their correlations and fluctuations. To achieve this, I will measure on various collision systems (129Xe, 16O and proton) during the coming LHC Run 3. These pioneering measurements, and the resulting new analyses, will decisively advance our understanding of those crucial initial conditions, that are the platform upon which the analysis of the entire collision rests. The results of this ERC will make it possible to determine the ultra-precise QGP properties and discover the new physics that could revise our concepts of the initial conditions.