In vivo Immunofluorescence-Optical Coherence Tomography
Current clinical medicine relies on MRI and CT for structural imaging, and immuno-PET/SPECT for molecular specificity. The combination of structural imaging and molecular specific imaging provides detailed information about expres...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Duración del proyecto: 59 meses
Fecha Inicio: 2025-01-01
Fecha Fin: 2029-12-31
Líder del proyecto
STICHTING VU
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Current clinical medicine relies on MRI and CT for structural imaging, and immuno-PET/SPECT for molecular specificity. The combination of structural imaging and molecular specific imaging provides detailed information about expression of proteins and cell surface receptors in vivo in humans. PET-CT/MRI has become an essential component of personalized medicine. However, the resolution of MRI/CT is just under a millimeter, while the resolution of PET is limited to about 2-10 millimeters, insufficient for early disease detection. Moreover, PET is associated with radiation burden of ligands labeled with a radiotracer and can image only one labeled ligand at a time.What is missing is the ability to image in vivo with much higher resolution, and to image multiple molecular targets and molecular interactions simultaneously. I propose to develop the optical equivalent of PET- CT/MRI with a 10 to 100 fold better resolution. To reach this goal I will integrate three-dimensional endoscopic Optical Coherence Tomography (OCT) for structural information with depth resolved imaging of fluorescently labeled monoclonal antibodies for molecular specificity. To image the hollow organs accessible by endoscopy, I will develop the immuno-OCT technology integrated with miniature motorized catheters and the multi-fiber detection technology for depth resolved fluorescence determination for endoscopic immuno-OCT in catheters as small as 1.5 mm diameter. I will focus on esophageal cancer and lung disease. The proposed research has a much broader impact, creating a platform to study in detail therapy-tissue interactions longitudinally in vivo in patients, providing in vivo information approaching immunohistochemistry analysis. This approach will revolutionize the diagnosis and treatment of patients with a resolution approaching immunohistology at high speed over large volumes using minimally invasive technologies.