In vivo Imaging Genesis and Circuit Integration of Interneurons Engineered from...
In vivo Imaging Genesis and Circuit Integration of Interneurons Engineered from Glia
Direct lineage reprogramming of cell identity in the nervous system offers the prospect of remodelling diseased brain circuits. Recent years have provided evidence for the possibility of converting brain glia into neurons in vivo....
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CRASCI
Spatial temporal characteristics of Cortical Reorganization...
170K€
Cerrado
Neuro-ReprOmics
Deconstructing in vivo glia to neuron conversion
213K€
Cerrado
MicroCONtACT
Microglial control of neuronal activity in the healthy and t...
2M€
Cerrado
GliaNFish
Glial-neuron crosstalk in the regulation of neurofilament dy...
196K€
Cerrado
BFU2012-33975
MECANISMOS INVOLUCRADOS EN LA RECUPERACION DE LAS PROPIEDADE...
129K€
Cerrado
SAF2015-63568-R
CONTROL DE LA ESTABILIDAD Y PLASTICIDAD DE LOS TERMINALES PR...
242K€
Cerrado
Información proyecto IMAGINE
Duración del proyecto: 61 meses
Fecha Inicio: 2021-11-03
Fecha Fin: 2026-12-31
Líder del proyecto
KINGS COLLEGE LONDON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Direct lineage reprogramming of cell identity in the nervous system offers the prospect of remodelling diseased brain circuits. Recent years have provided evidence for the possibility of converting brain glia into neurons in vivo. Yet, the process by which glial cells give up their original identity and adopt a neuronal fate remains by large enigmatic. Moreover, it is unclear how neurons induced from glia may integrate into the pre-existing circuits of non-neurogenic brain regions such as the cerebral cortex. Finally, can they participate in cortical information processing and even restore dysfunctional cortical circuits?
We have discovered a specific cocktail of reprogramming factors that gives rise to induced neurons with hallmark features of fast-spiking, parvalbumin-expressing interneurons, a neuronal subtype that is highly vulnerable in neuropsychiatric and neurological disorders. Here, we aim at visualising the conversion of glia into these induced interneurons in real time by in vivo imaging. This will not only unambiguously demonstrate the genuineness of the identity switch, but also unveil cellular intermediates along the reprogramming process. By measuring single cell gene expression during conversion, we will be able to relate intermediate states to their molecular underpinnings. Moreover, in vivo imaging will allow us to follow structural remodelling of dendrites as induced interneurons integrate into pre-existing cortical circuitry. By using in vivo calcium imaging in primary visual cortex, we will examine whether induced interneurons become recruited into sensory information processing circuits. Finally, we will scrutinise induced interneurons for their ability to rescue excitation-to-inhibition balance in a mouse model of endogenous interneuron dysfunction. IMAGINE will thus break new ground towards unveiling the full potential of engineered neurogenesis for brain repair.