In situ growth of thermoplasmonic nanoparticles in microfluidic platforms for mo...
In situ growth of thermoplasmonic nanoparticles in microfluidic platforms for modifying stem cell fate
The overarching goal of PLASMOSTEMFATE is to enable facile, inexpensive, and scalable fabrication of thermoplasmonic-microfluidic NSC culture platforms, posing transformational impacts in tissue engineering and regenerative medici...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-095159-B-I00
HIDROGELES QUE RESPONDEN A ENERGIA INFRARROJA Y CONTIENEN AD...
206K€
Cerrado
EnBioN
Engineering the Biointerface of Nanowires to Direct Stem Cel...
1M€
Cerrado
PCIN-2015-200-C02-02
BIOMATERIALES Y NANOPARTICULAS PARA MEJORAR EL IMPLANTE CELU...
75K€
Cerrado
PGC2018-102047-B-I00
ANDAMIOS BIOHIBRIDOS ASOCIADOS CON APATITOS NANOCRISTALINOS...
133K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The overarching goal of PLASMOSTEMFATE is to enable facile, inexpensive, and scalable fabrication of thermoplasmonic-microfluidic NSC culture platforms, posing transformational impacts in tissue engineering and regenerative medicine, addressing UNESCO sustainable development goal 3 (good health and wellbeing) and Mission Cancer of Europe’s Beating Cancer Plan. Thermoplasmonic gold nanoparticles can generate localized heat in response to biologically transparent near-IR light and their size- and shape-related properties can be leveraged to non-invasively monitor and direct the lineage commitment of neural stem cells (NSCs). This action will deploy and develop unconventional in situ nanoparticle synthesis to form shape-controlled thermoplasmonic nanoparticles directly inside microfluidic devices. The proposed platforms will significantly advance the controlled implementation of micro- and nano- structures as tools for manipulating NSC behaviors, by systematically applying both controlled fluid flows and plasmonic enhanced heating to modulate the cell microenvironment. The action will be hosted by Prof. Luis Liz-Marzán at CIC biomaGUNE, with Prof. Stephanie Seidlits’ group at the University of Texas at Austin as a secondment. This multidisciplinary action relies on collected expertise in plasmonics, bottom-up nanoparticle synthesis, microfluidics, and NSC biology. My strong background in in situ synthesis, thermoplasmonic nanoparticle characterization, and microfluidics offer synergies with the host and secondment for generating new research lines and strengthening collaborations between the two institutions. Ultimately, this action will expand my scientific network internationally, enable me to hone my skills in the rational synthesis of plasmonic nanostructures and acquire knowledge in fundamental stem cell biology, improve my mentorship expertise, and lay the foundation for a successful career as an independent researcher at a top university or research center.