In situ genetic perturbation of gut bacteria with engineered phage vectors and C...
In situ genetic perturbation of gut bacteria with engineered phage vectors and CRISPR
Humans live in a symbiotic relationship with trillions of microorganisms that inhabit our bodies and play an important role in health and disease. There is a growing interest in manipulating the microbiome to improve health, yet w...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SAF2015-72518-EXP
LAS TRNA SINTETASAS COMO REGULADORES MAESTROS DE LA INFECCIO...
54K€
Cerrado
SAF2012-38421
METAGENOMICA DE VIRUS EN PATOLOGIAS FRECUENTES DE LA CAVIDAD...
94K€
Cerrado
PhageResist
Beyond CRISPR Systematic characterization of novel anti pha...
2M€
Cerrado
MULTIPHAGE
Phage co-infection: a missing link in deciphering phage co-e...
1M€
Cerrado
BFU2008-00995
BIOLOGIA DE PLASMIDOS: DEL ANALISIS DE COMPONENTES A LOS SIS...
390K€
Cerrado
BFU2012-39879-C02-01
CONTRIBUCION DE LA RECOMBINACION HOMOLOGA EN LA DISEMINACION...
386K€
Cerrado
Información proyecto crInSitu
Duración del proyecto: 64 meses
Fecha Inicio: 2022-04-22
Fecha Fin: 2027-08-31
Líder del proyecto
INSTITUT PASTEUR
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Humans live in a symbiotic relationship with trillions of microorganisms that inhabit our bodies and play an important role in health and disease. There is a growing interest in manipulating the microbiome to improve health, yet we currently lack the knowledge and technology to carry out precise interventions. The objective of this proposal is to enable efficient in situ genetic perturbations of bacteria in the gut environment by developing the next generation of synthetic biology tools based on bacteriophage delivery vectors and CRISPR-Cas systems. The first aim is to establish a collection of genetically amenable bacteria of the human gut and the associated vectors. This will be achieved by delivering large combinatorial libraries of vectors to complex bacterial communities followed by the high-throughput identification and isolation of successfully modified bacteria. We will also identify bacterial defense systems against horizontal gene transfer and methods to bypass them. The second aim is to engineer and evolve phage vectors to deliver custom genetic circuits to the microbiome, using two main approaches: the construction of chimeric phage capsids, and the in vivo targeted mutagenesis of phage host range determinants using diversity generating retro-elements. The third aim is to perform in situ genetic perturbations in the gut environment using CRISPR-Cas tools. We will evaluate the efficiency and specificity of our phage vectors in the animal gut environment. Finally we will use our phage vectors to deliver CRISPR-Cas systems to bacteria in the mouse gut and perform forward genetic screens. This will shed light on the genetic requirements for growth in the gut and on the niche occupied by different members of the microbiome. Altogether, the knowledge and technologies developed in this project will be instrumental both to further our understanding of the gut microbiome and for the development of future microbiome targeted therapies.