In Silico Trial for Tuberculosis Vaccine Development
Tuberculosis (TB) one of the world’s deadliest diseases: one third of the world’s population, mostly in developing countries, is infected with TB. But TB is becoming again very dangerous also for developed countries, due to the in...
ver más
31/01/2023
ETNA
5M€
Presupuesto del proyecto: 5M€
Líder del proyecto
ETNA BIOTECH SRL
No se ha especificado una descripción o un objeto social para esta compañía.
Descripción del proyecto
Tuberculosis (TB) one of the world’s deadliest diseases: one third of the world’s population, mostly in developing countries, is infected with TB. But TB is becoming again very dangerous also for developed countries, due to the increased mobility of the world population, and the appearance of several new bacterial strains that are multi-drug resistant (MDR). There is now a growing awareness that TB can be effectively fought only working globally, starting from countries like India, where the infection is endemic. Once a person present the active disease, the most critical issue is the current duration of the therapy, because of the high costs it involved, the increased chances of non-compliance (which increase the probability of developing an MDR strain), and the time the patient is still infectious to others. One exciting possibility to shorten the duration of the therapy are new host-reaction therapies (HRT) as a coadjuvant of the antibiotic therapy. The endpoints in the clinical trials for HRTs are time to inactivation, and incidence of recurrence. While for the first it is in some cases possible to have a statistically powered evidence for efficacy in a phase II clinical trial, recurrence almost always require a phase III clinical trial with thousands of patients involved, and huge costs. In the STriTuVaD project we will extend our Universal Immune System Simulator to include all relevant determinants of such clinical trial, establish its predictive accuracy against the individual patients recruited in the trial, use it to generate virtual patients and predict their response to the HRT being tested, and combine them to the observations made on physical patients using a new in silico-augmented clinical trial approach that uses a Bayesian adaptive design. This approach, where found effective could drastically reduce the cost of innovation in this critical sector of public healthcare.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.