In Silico Pair Plasmas from ultra intense lasers to relativistic astrophysics i...
In Silico Pair Plasmas from ultra intense lasers to relativistic astrophysics in the laboratory
How do extreme electromagnetic fields modify the dynamics of matter? Will quantum electrodynamics effects be important at the focus of an ultra intense laser? How are the magnetospheres of compact stellar remnants formed, and can...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ENE2011-28200
ESTUDIO TEORICO Y COMPUTACIONAL DE PROCESOS PROCESOS ATOMICO...
123K€
Cerrado
ENE2008-06668-C02-01
DETERMINACION ANALITICA DE PROPIEDADES RADIATIVAS Y ECUACION...
4K€
Cerrado
FPA2009-10612
METODOS NO PERTURBATIVOS EN TEORIA CUANTICA DE CAMPOS Y APLI...
63K€
Cerrado
FIRE
Fluid Ions and Radiation Ensemble in Integrated Plasma Mode...
2M€
Cerrado
HPCAMO
A new computational framework for molecular dynamics
45K€
Cerrado
QUANTUM PLASMAS
Complex ideal and non ideal quantum plasmas
84K€
Cerrado
Información proyecto InPairs
Duración del proyecto: 73 meses
Fecha Inicio: 2016-07-19
Fecha Fin: 2022-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
How do extreme electromagnetic fields modify the dynamics of matter? Will quantum electrodynamics effects be important at the focus of an ultra intense laser? How are the magnetospheres of compact stellar remnants formed, and can we capture the physics of these environments in the laboratory? These are all longstanding questions with an overarching connection to extreme plasma physics.
Electron-positron pair plasmas are pervasive in all these scenarios. Highly nonlinear phenomena such as QED processes, magnetogenesis, radiation, field dynamics in complex geometries, and particle acceleration, are all linked with the collective dynamics of pair plasmas through mechanisms that remain poorly understood.
Building on our state-of-the-art models, on the availability of enormous computational power, and on our recent transformative discoveries on ab initio modelling of plasmas under extreme conditions, the time is ripe to answer these questions in silico. InPairs aims to understand the multidimensional dynamics of electron-positron plasmas under extreme laboratory and astrophysical fields, to determine the signatures of the radiative processes on pair plasmas, and to identify the physics of the magnetospheres of compact stellar remnants, focusing on the electrodynamics of pulsars, that can be mimicked in laboratory experiments using ultra high intensity lasers and charged particle beams.
This proposal relies on massively parallel simulations to bridge the gap, for the first time, between the pair plasma creation mechanisms, the collective multidimensional microphysics, and their global dynamics in complex geometries associated with laboratory and astrophysical systems. Emphasis will be given to detectable signatures e.g. radiation and accelerated particles, with the ultimate goal of solving some of the central questions in extreme plasma physics, thus opening new connections between computational studies, laboratory experiments, and relativistic plasma astrophysics.