In Silico Clinically-Viable Assistive Tools for Prediction and Rehabilitation of...
In Silico Clinically-Viable Assistive Tools for Prediction and Rehabilitation of Knee Osteoarthritis
Knee osteoarthritis (KOA) is a leading cause of disability worldwide, with ~14% prevalence in Europeans aged over 40. KOA prevalence continues to rise, thus far, with no cure or proven prevention protocols. Nonetheless, an aberran...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
PID2021-126469OB-C21
HYBRID REPRESENTATIONS OF OA: FROM BIOLOGY TO PATIENT CHARAC...
156K€
Cerrado
ALGOA
Novel algorithm for treatment planning of patients with oste...
150K€
Cerrado
PID2021-126469OB-C22
DESCRIPCION DE FENOTIPOS DE ARTROSIS DE RODILLA BASANDOSE EN...
164K€
Cerrado
Información proyecto CARE-KNEEOA
Duración del proyecto: 44 meses
Fecha Inicio: 2023-12-01
Fecha Fin: 2027-08-31
Líder del proyecto
ITASUOMEN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
302K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Knee osteoarthritis (KOA) is a leading cause of disability worldwide, with ~14% prevalence in Europeans aged over 40. KOA prevalence continues to rise, thus far, with no cure or proven prevention protocols. Nonetheless, an aberrant knee mechanobiological environment is known to accelerate KOA development. Tailored rehabilitation, aiming to favorably alter knee biomechanics and restore the joint, has shown great potential to postpone or decelerate KOA progression. But current rehabilitation protocols are based on indirect measures of knee biomechanics, often leading to suboptimal outcomes. Computational models have offered great potential for simulating knee mechanical response in functional activities, though none are developed in a holistic and individualized context. More importantly, they lack the prediction capability of tissue degeneration/regeneration to loading and the potential for clinical use, i.e., are not automated and fast and cannot use out-of-lab motion data. In this project, I will develop and validate highly personalized in silico tools to quantify knee cartilage mechanobiological degenerative/regenerative response geared towards out-of-lab and clinical use for predicting KOA progression in different functional activities, allowing personalized rehabilitation. The multiphysics computational models, assisted with artificial intelligence (AI), will be validated at different spatial scales using in vitro tissue and cell level experiments and in vivo joint loading and quantitative medical images. This multidisciplinary project bridges together complementary skill sets of Dr. Esrafilian, Profs. Korhonen’s and Delp’s teams, with their expertise in biomechanics, computational modeling, biochemistry, biology, and AI. The beyond state-of-the-art models of this research can make a profound impact on early-stage KOA prediction and treatment planning, potentially increasing the quality of life in KOA individuals and reducing the need for surgical interventions.