In Silico Clinically-Viable Assistive Tools for Prediction and Rehabilitation of...
In Silico Clinically-Viable Assistive Tools for Prediction and Rehabilitation of Knee Osteoarthritis
Knee osteoarthritis (KOA) is a leading cause of disability worldwide, with ~14% prevalence in Europeans aged over 40. KOA prevalence continues to rise, thus far, with no cure or proven prevention protocols. Nonetheless, an aberran...
Knee osteoarthritis (KOA) is a leading cause of disability worldwide, with ~14% prevalence in Europeans aged over 40. KOA prevalence continues to rise, thus far, with no cure or proven prevention protocols. Nonetheless, an aberrant knee mechanobiological environment is known to accelerate KOA development. Tailored rehabilitation, aiming to favorably alter knee biomechanics and restore the joint, has shown great potential to postpone or decelerate KOA progression. But current rehabilitation protocols are based on indirect measures of knee biomechanics, often leading to suboptimal outcomes. Computational models have offered great potential for simulating knee mechanical response in functional activities, though none are developed in a holistic and individualized context. More importantly, they lack the prediction capability of tissue degeneration/regeneration to loading and the potential for clinical use, i.e., are not automated and fast and cannot use out-of-lab motion data. In this project, I will develop and validate highly personalized in silico tools to quantify knee cartilage mechanobiological degenerative/regenerative response geared towards out-of-lab and clinical use for predicting KOA progression in different functional activities, allowing personalized rehabilitation. The multiphysics computational models, assisted with artificial intelligence (AI), will be validated at different spatial scales using in vitro tissue and cell level experiments and in vivo joint loading and quantitative medical images. This multidisciplinary project bridges together complementary skill sets of Dr. Esrafilian, Profs. Korhonen’s and Delp’s teams, with their expertise in biomechanics, computational modeling, biochemistry, biology, and AI. The beyond state-of-the-art models of this research can make a profound impact on early-stage KOA prediction and treatment planning, potentially increasing the quality of life in KOA individuals and reducing the need for surgical interventions.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.