Improving surface and bulk properties of promising fusion material using deep cr...
Improving surface and bulk properties of promising fusion material using deep cryogenic treatment
With progress and development of society, the necessity of a more affordable, reliable and sustainable energy is crucial to stability and prosperity of ever-growing population. For this reason, fusion power is being researched and...
With progress and development of society, the necessity of a more affordable, reliable and sustainable energy is crucial to stability and prosperity of ever-growing population. For this reason, fusion power is being researched and developed to obtain high amounts of stable and greener energy compared to conventionally fossil fuel-based and fission processes. Materials, which are being tested as possible candidates for fusion reactor components, are mainly based on the previous selections designated for fission nuclear power. However, their implementation is not easily transmittable and has been proven to be considerably challenging. Consequently, there is a high interest towards research of new development and processing (such as heat treatment) of selected materials applicable for fusion as well as materials that were not previously considered. The proposal suggests to conduct fundamental research on selected material (proposed alternative AISI 431) and its treatment, which has the potential to be used as material for fusion reactor components. The project tends to provide base understanding on how deep cryogenic treatment (DCT) improves materials’ properties for fusion applications through their microstructural tailoring. Focus is placed on the role of modified microstructure as well as nano-chemistry on the corrosion resistance, which is up to now only superficially explored. Due to the unique influence of DCT on microstructure, the process can provide a novel greener way of material treatment that is both highly effective as well as economically feasible. The proposal challenges promising alternative material for fusion and aims to show how DCT can effectively improve microstructure, corrosion and surface resistance of selected material. Furthermore, the project will also develop new fundamental knowledge of DCT effect on metallic materials in order to provide future possibilities and treatment combinations for materials used in fusion.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.