Impact of identified interneurons on cellular network mechanisms in the human an...
Impact of identified interneurons on cellular network mechanisms in the human and rodent neocortex
This application addresses mechanisms linking the activity of single neurons with network events by defining the function of identified cell types in the cerebral cortex. The key hypotheses emerged from our experiments and propose...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CORTICAL ASSEMBLY
Excitatory and inhibitory cell assembliesin the cerebral cor...
2M€
Cerrado
BFU2010-17305
DEVELOPMENT OF NEURONAL MICROCIRCUITS IN THE CEREBRAL CORTEX...
229K€
Cerrado
CORTEXSELFCONTROL
Self Modulating Neurons in the Cerebral Cortex From Molecul...
996K€
Cerrado
DMANDYB ASTROMORPH
Studying the dynamic structural interactions between neurons...
182K€
Cerrado
SAF2011-28845
MECANISMOS CELULARES Y MOLECULARES QUE CONTROLAN EL DESARROL...
545K€
Cerrado
DEVINCI
Developmental principles for the functional specialisation o...
3M€
Cerrado
Información proyecto INTERIMPACT
Líder del proyecto
SZEGEDI TUDOMANYEGYETEM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This application addresses mechanisms linking the activity of single neurons with network events by defining the function of identified cell types in the cerebral cortex. The key hypotheses emerged from our experiments and propose that neurogliaform cells and axo-axonic cells achieve their function in the cortex through extreme forms of unspecificity and specificity, respectively. The project capitalizes on our discovery that neurogliaform cells reach GABAA and GABAB receptors on target cells through unitary volume transmission going beyond the classical theory which states that single cortical neurons act in or around synaptic junctions. We propose that the spatial unspecificity of neurotransmitter action leads to unprecedented functional capabilities for a single neuron simultaneously acting on neuronal, glial and vascular components of the surrounding area allowing neurogliaform cells to synchronize metabolic demand and supply in microcircuits. In contrast, axo-axonic cells represent extreme spatial specificity in the brain: terminals of axo-axonic cells exclusively target the axon initial segment of pyramidal neurons. Axo-axonic cells were considered as the most potent inhibitory neurons of the cortex. However, our experiments suggested that axo-axonic cells can be the most powerful excitatory neurons known to date by triggering complex network events. Our unprecedented recordings in the human cortex show that axo-axonic cells are crucial in activating functional assemblies which were implicated in higher order cognitive representations. We aim to define interactions between active cortical networks and axo-axonic cell triggered assemblies with an emphasis on mechanisms modulated by neurogliaform cells and commonly prescribed drugs.