Impact of foreshock transients on near-Earth space
This project addresses major open questions in plasma physics: the dynamics of collisionless shocks, their impact on the downstream medium and particle acceleration. Collisionless shocks are powerful particle accelerators, ubiquit...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
XPACE
Extreme Particle Acceleration in Shocks: from the laboratory...
2M€
Cerrado
ESP2017-86263-C4-3-R
CONTRIBUCION DE LA URJC AL RETORNO CIENTIFICO DE ASIM: ANALI...
46K€
Cerrado
SHALOM
Explosive phenomena in the Universe Gamma Ray Bursts and Su...
185K€
Cerrado
TMSP
Mass accretion and ejection in transitional millisecond puls...
168K€
Cerrado
PID2020-112805GA-I00
TRANSPORTE Y DISIPACION DE ENERGIA EN LA HELIOSFERA INTERNA:...
90K€
Cerrado
WIRE
Waves in the Inner Magnetosphere and their Effects on Radiat...
2M€
Cerrado
Información proyecto WAVESTORMS
Duración del proyecto: 65 meses
Fecha Inicio: 2024-03-19
Fecha Fin: 2029-08-31
Líder del proyecto
HELSINGIN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project addresses major open questions in plasma physics: the dynamics of collisionless shocks, their impact on the downstream medium and particle acceleration. Collisionless shocks are powerful particle accelerators, ubiquitous in astrophysical plasmas. Recent works suggest that the dynamics of the shock precursor, or foreshock, contributes greatly to shock acceleration. Here we use near-Earth space as a natural laboratory to quantify the impact of transient kinetic structures forming in the foreshock. These foreshock transients are particularly intriguing because in addition to contributing to acceleration at the shock itself, they impact geospace as a whole in driving swift, intense wave storms in Earth's magnetosphere. In this proposal, I present recent data revealing that these waves accelerate energetic electrons in Earth's radiation belts, connecting for the first time the dynamics of two major acceleration sites at Earth. This issue has never been explored because of considerable challenges: multi-point in situ observations and global kinetic simulations are needed to unravel the complex processes at work. The WAVESTORMS project makes full use of recent advances on both of these fronts to resolve the impact of foreshock transients on near-Earth space in a holistic manner. Using a flagship kinetic model of the global magnetosphere and high-fidelity space- and ground-based measurements, we will (1) fully characterise their interaction with the shock and their contribution to shock acceleration, (2) quantify the radiation belt response (acceleration and losses), (3) connect our findings to the solar wind context, to finally (4) quantify their global impact on near-Earth space. My expertise in foreshock physics and in combining multi-mission data and cutting-edge simulations puts me in a unique position to lead this project. Our results will constitute a breakthrough in our understanding of near-Earth space dynamics and particle acceleration in general.