Imaging The Topological Defects of Light Induced Phases in Quantum Materials
Quantum materials host many exotic and useful phases, and harnessing these states has spurred tremendous research effort. However, the full potential of quantum materials lies in the rich landscape of higher-energy hidden phases,...
ver más
31/12/2029
FUNDACION IMDEA NA...
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
FUNDACION IMDEA NANOCIENCIA
Otra investigación y desarrollo experimental en ciencias naturales y técnicas asociacion
TRL
4-5
| 130K€
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-10-10
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto KnotSeen
Duración del proyecto: 62 meses
Fecha Inicio: 2024-10-10
Fecha Fin: 2029-12-31
Líder del proyecto
FUNDACION IMDEA NANOCIENCIA
Otra investigación y desarrollo experimental en ciencias naturales y técnicas asociacion
TRL
4-5
| 130K€
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Quantum materials host many exotic and useful phases, and harnessing these states has spurred tremendous research effort. However, the full potential of quantum materials lies in the rich landscape of higher-energy hidden phases, those which are not thermally accessible. Ultrafast laser excitation has recently emerged as a way access these hidden phases, leading to the idea of re-writing material properties on demand, but these states usually only survive for hundreds of picoseconds. Thus a key outstanding question remains: how can we stabilize light-induced phases?
One key mechanism which can stabilize a phase is topology. The ultrafast phase transitions induced by femtosecond laser pulses naturally lead to the generation of topological defects. These defects, which can only relax after propagating until they encounter another topological defect, could either offer a route to stabilizing light-induced phases or impede their formation, and have been invoked in both contexts to explain many observations. However, actually imaging these nanometer scale defects on the femtosecond to nanosecond timescales required for light-induced phases has not been possible, and so the role of topological defects in light-induced phases remains unclear.
In KnotSeen I will perform the first real space imaging of topological defects in light-induced phases using coherent XUV imaging methods, which provide the necessary spatial, temporal, and spectral resolution to map topological defects at the nanoscale and out of equilibrium. I will map the creation, propagation, and destruction of topological defects in two important cases: quenched superconductivity in the cuprates and light-induced phases in the manganites. A novel data analysis approach will be used to distinguish repeatable from stochastic dynamics at the nanoscale. KnotSeen will reveal the mechanisms by which topological defects control light-induced phases, enabling new tools to stabilize and selectively control them.