Imaging of MUscle Shape Changes during eLEctrically-stimulated contractions
When we move, our muscles contract, and by doing so change shape. While such shape changes are obvious and are required for a muscle to increase its force, we know little about its functional role in force production. Muscle force...
When we move, our muscles contract, and by doing so change shape. While such shape changes are obvious and are required for a muscle to increase its force, we know little about its functional role in force production. Muscle force is one of the most important parameters in the science of movement, yet it remains impossible to measure in humans. Understanding the precise link between muscle shape changes and muscle forces and advancing methodologies for measuring such muscle shape changes can thus have an important fundamental and ultimately also clinical scientific impact. In I-MUSCLE, I propose to first advance innovative techniques for measuring whole muscle shape changes during muscle contractions, and secondly, to use these advancements to answer key questions about 3D muscle shape changes and its role in force production. I will take an in situ approach to study the calf muscle of guinea fowl (Numida meleagrisis L.). I will stimulate the muscle to induce steady-state contractions at different muscle-tendon unit lengths, at different activation levels, and during concentric and eccentric dynamic contractions. I will measure the muscle shape changes by using state-of-the-art imaging modalities, i.e. ultrafast computed tomography (< 2s) and high-speed stereo (3D) X-ray videography (up to 750 Hz), while also recording muscle forces. The shape changes will be assessed (i) when the muscle is activated globally and (ii) when the muscle is activated locally in specific parts of the muscle. The latter is relevant given that we often activate only parts of our muscles, for example during walking or when using electrical muscle stimulation for rehabilitation purposes. Gaining a better understanding of how muscles change shape under realistic conditions and how it is linked to muscle force is critical for treatment of neurological disorders affecting muscle contraction, patient rehabilitation following injury or surgery, and development of bio-inspired robotics.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.