Identifying RNA fate checkpoints by resolving the high resolution spatiotemporal...
Identifying RNA fate checkpoints by resolving the high resolution spatiotemporal binding dynamics of CBC containing complexes
High-throughput transcriptomic analyses in human cell lines have found that >80% of the genome is transcriptionally
active. A major part of this massive genomic output is derived from RNA polymerase II (RNAPII) activity; such as,...
High-throughput transcriptomic analyses in human cell lines have found that >80% of the genome is transcriptionally
active. A major part of this massive genomic output is derived from RNA polymerase II (RNAPII) activity; such as, mRNA,
sn(o)RNA and long non-coding RNA. However, although these transcripts all contain 5’-m7G caps, which are common
hallmarks of RNAPII-derived transcripts, their fates differ substantially as some are rapidly degraded while others remain
stable and exercise diverse functions in the cell. What is the underlying mechanism? Transcript fate decisions are ultimately
dictated by the proteins with which the nascent RNA associate. Central to this process is the cap-binding complex (CBC).
Through its early association with the 5’-m7G cap, the CBC directs a plethora of nuclear RNA metabolic events by serving
as a landing pad to recruit productive and/or destructive factors. Therefore, composition of the early RNA-protein particle
plays an essential role in dictating RNA fate, and the CBC and its cofactors pose an interesting dichotomous system to study
as a model for sorting mechanisms dictating RNA fate.
In my project, I will delineate the spatiotemporal recruitment kinetics of selected RNA metabolic factors to identify when RNA
fate decisions are made during transcription and how RNA/DNA elements contribute. To resolve the sequential loading of
the CBC and its cofactors onto elongating transcripts, I will develop time course UV cross-linking and immunoprecipitation
(CLIP) experiments, combining metabolic labelling of RNA, using the photoactivatable ribonucleoside analogue 4-sU, with a
new and unprecedentedly high powered UV cross-linking technology employed at multiple short time increments. This will
for the first time enable the study of in vivo RNA binding kinetics of RNA-binding proteins with a temporal resolution
necessary to characterise co-transcriptional RNA fate decisions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.