Innovating Works

HYDROGENATE

Financiado
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient Combus...
Chemical energy carriers will play an essential role for future energy systems, where harvesting and utilization of renewable energy occur not necessarily at the same time or place, hence long-time storage and long-range transport... Chemical energy carriers will play an essential role for future energy systems, where harvesting and utilization of renewable energy occur not necessarily at the same time or place, hence long-time storage and long-range transport of energy are needed. For this, hydrogen-based energy carriers, such as hydrogen and ammonia, hold great promise. Their utilization by combustion-based energy conversion has many advantages, e.g., versatile use for heat and power, robust and flexible technologies, and its suitability for a continuous energy transition. However, combustion of both hydrogen and ammonia is very challenging. For technically relevant conditions, both form intrinsic, so-called thermo-diffusive instabilities (very different from the often-discussed thermo-acoustic instabilities), which can increase burn rates by a stunning factor of three to five! Without considering this, computational design is impossible. Yet, while linear theories exist, little is understood for the more relevant non-linear regime, and beyond some data and observations, virtually nothing is known about the interactions of intrinsic flame instabilities (IFI) with turbulence. Here, rigorous analysis of new data for neat H2 and NH3/H2-blends from simulations and experiments will lead to a quantitative understanding of the relevant aspects. From this, a novel modeling framework with uncertainty estimates will be developed. The key hypothesis then is that combustion processes of hydrogen-based fuels can be improved by targeted weakening or promotion of IFI, and that this kind of instability-controlled combustion can jointly improve efficiency, emissions, stability, and fuel flexibility in different combustion devices, such as spark-ignition engines, gas turbines, and industrial burners. Guided by the developed knowledge and tools, this intrinsic-flame-instability-controlled combustion concept will be demonstrated computationally and experimentally for two sample applications. ver más
31/05/2027
2M€
Duración del proyecto: 60 meses Fecha Inicio: 2022-05-19
Fecha Fin: 2027-05-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2022-05-19
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2021-ADG: ERC ADVANCED GRANTS
Cerrada hace 3 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
RHEINISCHWESTFAELISCHE TECHNISCHE HOCHSCHULE... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5