The objective of the research described in this proposal is to develop a new mode of activation for catalysis leading to more sustainable catalytic processes using abundant feedstock materials. By merging hydrogen bonding and pha...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2013-40568-P
APROXIMACIONES INNOVADORAS PARA EL DESCUBRIMIENTO SOSTENIBLE...
86K€
Cerrado
CTQ2014-59015-R
SINTESIS SOSTENIBLE DE FARMACOFOROS HETEROCICLICOS Y GRAFENO...
189K€
Cerrado
CTQ2015-64937-R
SINTESIS AZAHETEROCICLICA MEDIANTE METODOLOGIAS ORGANOMETALI...
90K€
Cerrado
CTQ2017-88496-R
DISEÑO DE SISTEMAS DE OXIDACION BASADOS EN HALUROS PARA LA F...
258K€
Cerrado
CTQ2013-43012-P
INVESTIGACIONES MECANISTICAS PARA SINTESIS ORGANICA SOSTENIB...
163K€
Cerrado
PID2019-104159GB-I00
SISTEMAS ORGANOMETALICOS PARA TRANSFORMACIONES ESTEQUIOMETRI...
61K€
Cerrado
Información proyecto HBPTC
Duración del proyecto: 68 meses
Fecha Inicio: 2019-04-23
Fecha Fin: 2024-12-31
Descripción del proyecto
The objective of the research described in this proposal is to develop a new mode of activation for catalysis leading to more sustainable catalytic processes using abundant feedstock materials. By merging hydrogen bonding and phase transfer catalysis, we propose that hydrogen bonding of an insoluble unreactive anionic nucleophile with a hydrogen bond donor catalyst will form a soluble and reactive entity now capable of carbon-nucleophile bond formation with concomitant release of the hydrogen bond donor catalyst. This activation mode is applicable to nucleophiles as simple as feedstock inorganic salts enabling challenging asymmetric bond-forming reactions in a general and predictable fashion. Inexpensive lost nucleophiles currently unusable due to poor solubility and reactivity will be reclaimed as effective reagents for asymmetric catalysis. Common inorganic salts such as sodium chloride or potassium fluoride will be transformed into high-value products such as complex pharmaceutical and agrochemical products applying operationally simple and cost effective protocols. Synergistic catalysis whereby hydrogen bonding phase transfer catalysis will work in concert with an additional catalytic cycle will be implemented to introduce new chemical transformations with these feedstock reagents, improve efficiency, and create catalytic enantioselectivity where stereocontrol is absent or challenging. This research will require the development of high performance catalysts and the understanding of catalytic mechanisms applying structural, kinetics, and computational studies. HBPTC is expected to expand the field of catalysis, and rival the efficiency of some of the most active metal, organocatalyst and biocatalyst known to date.