Hydrogel Machines for Seamless Living System Interfaces
Bioelectronic interfaces are machines designed to exchange information with living matter. They are opening new frontiers in medicine. For example, machines implanted in the body may soon enable repair of damaged tissues or replac...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SupraBioElectris
Supramolecular biomimetic and electroconductive hydrogels: h...
173K€
Cerrado
PID2021-125767OB-I00
PLATAFORMAS CONDUCTIVAS E INTERACTIVAS MULTIFUNCIONALES BASA...
315K€
Cerrado
ClickBioGel
Bio-based Hydrogels by Click Chemistry for Cartilage Tissue...
189K€
Cerrado
BIOELECTRIC
A Soft Bioelectric Implant from Droplet Networks
150K€
Cerrado
RTI2018-101256-J-I00
HIDROGELES BIOCOMPATIBLES CON RIGIDEZ DINAMICAMENTE AJUSTABL...
190K€
Cerrado
CTQ2017-88158-R
DISEÑO DE GELES HIBRIDOS DE GRAFENO PARA EL CULTIVO DE CELUL...
134K€
Cerrado
Información proyecto GELECTRO
Duración del proyecto: 61 meses
Fecha Inicio: 2024-05-10
Fecha Fin: 2029-06-30
Descripción del proyecto
Bioelectronic interfaces are machines designed to exchange information with living matter. They are opening new frontiers in medicine. For example, machines implanted in the body may soon enable repair of damaged tissues or replacement of functions affected by chronic disease. The realisation of this vision is impeded by the available hardware. Today’s materials, devices and systems are electronic, while soft living matter uses ions and molecules for communication and computation.
The central hypothesis of GELECTRO is: electrically conductive hydrogels can enable bioelectronic machines that are multimodal and nearly indistinguishable from the biological host. The project will thus contribute a new class of interfacing technologies that are made almost entirely of water. If successful, they will not only blur the boundary with the host, but also tap into the control loops that organise and maintain the living system.
The hypothesis will be validated by achieving five key aims. Hydrogels with dual (electronic and ionic) conductivity will be created by combining organic conductor and biomacromolecule building blocks. A tailored additive microfabrication method will be developed to combine hydrogels in devices. Devices that transduce electronic commands into ionic currents, release/sequestration of signalling molecules and mechanical actuation (and vice versa) will be constructed. Devices will be integrated in arrays and in circuits capable of sensing and actuation in aqueous environments. Finally, an impact case study interfacing GELECTRO machines with cortical organoid cultures will be developed. By emulating the finely tuned morphogens present in the early stages of brain development, GELECTRO machines will encode advanced tissue organisation and emergent electrical activity in the organoids.
The project will catalyse interest in hydrogel-based electronics as a promising technology for next generation human-machine interfaces.